
API Management
Change the API symbol in the global variable namespace under which ComponentJS is exposed. By default
ComponentJS is exposed under the symbol name ComponentJS. It is a common convention to change the
symbol to cs (for "component system/service") to have a convenient short-hand.

ComponentJS.symbol([name: String]): ComponentJS

Change symbol of ComponentJS API to global variable name and return it. If name is not given,
ComponentJS does not occupy any global namespace slot at all — then it is required to store the
return value and use ComponentJS directly through it.

ComponentJS.symbol("cs")        /* standard    */
var cs = ComponentJS.symbol()   /* alternative */

ComponentJS.version = { major: Number, minor: Number, micro: Number, date: Number
}

Access the ComponentJS implementation version "major.minor.micro" and the corresponding
release date (in format YYYYMMDD).

if (ComponentJS.version.date < 20120101)
throw new Error("need at least ComponentJS as of 20120101")

Library Management
ComponentJS can be extended through plugins, so it can initialize some of its internals only once all plugins
were loaded and executed.

ComponentJS.bootstrap(): Void

Bootstrap the ComponentJS library by initializing its internals. This has to be called at least before
any calls to create(), but can be called after any calls to symbol(), debug() or ns().

cs.bootstrap()

ComponentJS.shutdown(): Void

Shutdown the ComponentJS library by destroying its internals. This implicitly destroy the existing
component tree, too.

cs.shutdown()

ComponentJS.plugin(): String[]

ComponentJS.plugin(name: String): Boolean

ComponentJS.plugin(name: String, callback: Function): Void

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 1 / 24



Return the names of all registered plugins, check for the registration of a particular plugin with name
name or register a new plugin under name name with callback function callback. The callback
function callback should have the signature "callback(_cs: ComponentJS_API_internal, $cs:
ComponentJS_API_external, GLOBAL: Environment): Void" where _cs is the internal ComponentJS API
(you have to check the source code of ComponentJS to know what you can do with it), $cs is the
external ComponentJS API (the one described in this document) and GLOBAL is the global
environment object (usually window in a browser, global in Node.js, etc).

/*  add a "foo()" method to all components  */
ComponentJS.plugin("foo", function (_cs, $cs, GLOBAL) {

var trait = $cs.trait({
protos: {

foo: function () {
...

}
}

});
_cs.latch("ComponentJS:bootstrap:comp:mixin", function (mixins) {

mixins.push(trait);
});

});

Debugging
ComponentJS has special support for debugging its run-time processing, especially for visualizing the current
component tree in real-time.

ComponentJS.debug(): Number

ComponentJS.debug(level: Number): Void

ComponentJS.debug(level: Number, message: String): Void

Get current debug level, or configure the debugging through maximum debug-level level (0 disables
all debug messages, 9 enables all debug messages) or log a particular message under debug-level
level.

cs.debug(0)
if (cs.plugin("debugger")) {

if (cs.debug_instrumented()) {
cs.debug(9)
cs.debug_window({ ... })

}
}

ComponentJS.debug_instrumented(): Boolean

Notice: requires ComponentJS plugin debugger to be loaded!

Determine whether the current browser is "instrumented" for debugging, i.e., whether the browser's
built-in debugger is activated (in detached mode only). Currently ComponentJS is able to determine
Firefox's Firebug and Chrome's Inspector only.

if (cs.debug_instrumented()) ...

ComponentJS.debug_window({ enable: Boolean, autoclose: Boolean, name: String, width:
Number = 800, height: Number = 600, natural: Boolean = false })

ComponentJS.debug_window(enable: Boolean, autoclose: Boolean, name: String)

Notice: requires ComponentJS plugin debugger to be loaded!

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 2 / 24



On enable true/false open/close the extra browser window containing the ComponentJS debugger
view for the ComponentJS application identified by name. If autoclose is true, optionally
automatically close the debugger window with application window (which usually is inconvenient
during debugging because on application reloads the ComponentJS debugger window is recreated
with default width/height at default position instead of reused). Parameters width and height can be
used to change the initial window size. Parameter natural controls whether the component tree is
drawn with the root component at the bottom (true) or at the top (false).

cs.debug_window({
enable: true,
autoclose: false,
name "My App"
width: 800,
height: 800,
natural: true

})

Code Structuring
ComponentJS internally uses a few code structuring utility functions for implementing class method
parameters and class attributes. Those utility functions are also exposed for consumption by application
developers, but they are NOT(!) required for using ComponentJS. Especially, it is NOT(!) required that
component backing objects are defined by cs.clazz!

ComponentJS.ns(path: String[, leaf: Object = {}]): Object

Classes and traits should be structured through namespaces. A namespace is a JavaScript (hash)
object, potentially itself part of a parent namespace object. The top-most implicit namespace object
is window. A namespace has a dot-separated fully-qualified symbol path like foo.bar.quux. This
method allows to create the fully-qualified path of nested objects through the dot-separated path of
object names, optionally assign the right-most/leaf object to leave and finally return the right-most/
leaf Object.

cs.ns("my.app"); my.app.ui = cs.clazz({ ... })  /* standard    */
cs.ns("my.app").ui = cs.clazz({ ... })          /* alternative */
cs.ns("my.app.ui", cs.clazz({ ... })            /* alternative */

ComponentJS.select(object: Object, path: String[, value: Object]): Object

Dereference into (and this way subset) object according to the path specification and either return
the dereferenced value or set a new value. Object has to be a hash or array object. The path
argument has to follow the following grammar (which is a direct JavaScript dereferencing syntax):

path ::=segment segment*
segment ::=bybareword | bykey
bybareword::="."? identifier
bykey ::="[" key "]"
identifier ::=/[_a-zA-Z$][_a-zA-Z$0-9]*/
key ::=number | squote | dquote
number ::=/[0-9]+/
dquote ::=/"(?:\\"|.)*?"/
squote ::=/'(?:\\'|.)*?'/

Setting the value to undefined effectively removes the dereferenced value. If the dereferenced
parent object is a hash, this means the value is delete'ed from it. If the dereferenced parent object
is an array, this means the value is splice'ed out of it.

cs.select({ foo: { bar: { baz: [ 42, 7, "Quux" ] } } }, "foo['bar'].baz[2]") → "Quux"

ComponentJS.validate(object: Object, spec: String): Boolean

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 3 / 24



Validate an arbitrary nested JavaScript object object against the specification spec. The specification
spec has to be either a RegExp object for String validation, a validation function of signature
"spec(Object): Boolean" or a string following the following grammar (which is a mixture of JSON-like
structure and RegExp-like quantifiers):

spec ::=not | alt | hash | array | any | primary | class | special
not ::="!" spec
alt ::="(" spec ("|" spec)* ")"
hash ::="{" (key arity? ":" spec ("," key arity? ":" spec)*)? "}"
array ::="[" (spec arity? ("," spec arity?)*)? "]"
arity ::="?" | "*" | "+" | "{" number "," (number | "oo") "}"
number::=/^[0-9]+$/
key ::=/^[_a-zA-Z$][_a-zA-Z$0-9]*$/ | "@"
any ::="any"
primary::=/^(?:null|undefined|boolean|number|string|function|object)$/
class ::=/^[A-Z][_a-zA-Z$0-9]*$/
special ::=/^(?:clazz|trait|component)$/

The special key "@" can be used to match an arbitrary hash element key.

cs.validate({ foo: "Foo", bar: "Bar", baz: [ 42, 7, "Quux" ] },
"{ foo: string, bar: any, baz: [ number+, string* ], quux?: any }")

ComponentJS.params(name: String, args: Object[], spec: Object): Object

Handle positional and named function parameters by processing a function's arguments array.
Parameter name is the name of the function for use in exceptions in case of invalid parameters.
Parameter args usually is the JavaScript arguments pseudo-array of a function. Parameter spec is the
parameter specification: each key is the name of a parameter and the value has to be an Object with
the following possible fields: pos for the optional position in case of positional usage, def for the
default value (of not required and hence optional parameters), req to indicate whether the
parameter is required and valid for type validation (either a string accepted by the validate()
method, or a valid regular expression C object for validating a String against it or an arbitrary
validation callback function of signature "valid(Object): Boolean".

function config () {
var params = $cs.params("config", arguments, {

scope: { pos: 0, req: true,      valid: "boolean"           },
key:   { pos: 1, req: true,      valid: /^[a-z][a-z0-9_]*$/ },
value: { pos: 2, def: undefined, valid: "object"            },
force: {         def: false,     valid: "boolean"           }

});
var result = db_get(params.scope, params.key);
if (typeof params.value !== "undefined")

db_set(params.scope, params.key, params.value, params.force);
return result;

}
var value = config("foo", "bar");
config("foo", "bar", "quux");
config({ scope: "foo", key: "bar", value: "quux", force: true });

ComponentJS.attribute({ name: String, def: Object, valid: Object }): Function

ComponentJS.attribute(name: String, def: Object, valid: Object): Function

Create a cloneable attribute capturing getter/setter function with name name (for exception handling
reasons only), the default value def and the value validation valid.

var id = ComponentJS.attribute("id", "foo", /^[a-z][a-zA-Z0-9_]*/);
id() === "foo"
id("bar") → "foo"
id() → "bar"

ComponentJS.clazz({ [name: String,] [extend: Clazz,] [mixin: Array(Trait),] [cons:
Function,] [dynamics: Object,] [protos: Object,] [statics: Object] }): Clazz

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 4 / 24



Define a JavaScript Class, optionally stored under the absolute dot-separated object path name,
optionally extending the base/super/parent Class extend and optionally mixing in the functionality of
one or more Traits via mixin. The class can have a constructor function cons which is called once the
Class is instantiated and which can further initialize the dynamic fields of the class. On each
instantiation, all fields which are specified with dynamics are cloned and instantiated and all
methods in protos are copied into the Class prototypes object. The statics content is copied into
the Class itself only. In case of extend and/or mixin, both the cons and methods of protos can call
this.base(...) for the base/super/parent method.

var foo = cs.clazz({
cons: function (bar) {

this._bar = bar;
},
protos: {

bar: function (value_new) {
var value_old = this._bar;
if (typeof value_new !== "undefined")

this._bar = value_new;
return value_old;

}
[...]

}
})

It is important to notice how calls to any method resolve and how calls to this.base() in any
method of a class resolves. When on class Foo and its instanciated object foo a method foo.bar()
is called, the following happens:

◦ First, a direct property named bar on object foo is tried. This can exist on foo through (in
priority order) a bar in either the dynamics definition of a mixin of Foo, or in the statics
definition of a mixin of Foo, or in the dynamics definition of Foo, or in the statics definition
of Foo.

◦ Second, an indirect prototype-based property named bar on object foo is tried. This can
exist on foo through (in priority order) a bar in either the protos definition of Foo or in the
protos definition of any extend of Foo.

When on class Foo and its instanciated object foo in any method foo.bar() the this.base() is
called, the following happens:

◦ First, a call to the super/base/parent functions in the mixin trait chain is attempted. The
mixins are traversed in the reverse order of the trait specification in the mixin array, i.e.,
the last trait's mixins are tried first.

◦ Second, a call to the super/base/parent functions in the extend inheritance class chain is
attempted. First, the directly extend class is attempted, then the extend class of this class,
etc.

NOTICE: As ComponentJS does not care at all how backing objects of components are defined, you
can alternatively use an arbitrary solution for Class-based OO in JavaScript (e.g. TypeScript, JSClass,
ExtendJS, DejaVu, Classy, jTypes, etc) or fallback to the also just fine regular Prototype-based OO in
JavaScript:

var foo = function (bar) {
this._bar = bar;

}
foo.prototype.bar = function (value_new) {

var value_old = this._bar;
if (typeof value_new !=== "undefined")

this._bar = value_new;
return value_old;

}
[...]

ComponentJS.trait({ [name: String,] [mixin: Array(Trait),] [cons: Function,] [setup:
Function,] [dynamics: Object,] [protos: Object,] [statics: Object] }): Trait

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 5 / 24



Define a JavaScript Trait (a Class which can be mixed in), optionally stored under the absolute dot-
separated object path name and optionally mixing in the functionality of one or more other Traits via
mixin. The trait can have a constructor function cons which is called once the Class the Trait is
mixed in is instantiated and which can further initialize the dynamic fields of the Class. On each
instantiation, all fields which are specified with dynamics are cloned and instantiated and all
methods in protos are copied into the Class prototypes object. The statics content is copied into
the Class itself only. The optional setup function is called directly at the end of Class definition (not
instantiation) and can further refine the defined Class.

var foo = cs.trait({
protos: {

bar: function () {
[...]

}
}

})

Component Creation
Components are managed in hierarchical fashion within a component tree. The component tree can be
traversed and its components can be created, looked up, state transitioned, communicated on and be
destroyed.

ComponentJS.create(abs-tree-spec: String, class: Class[, ...]): Object

ComponentJS.create(base: Component, rel-tree-spec: String, class: Class[, ...]): Object

component.create(rel-tree-spec: String, class: Class[, ...]): Object

Create one or more components. Their structure is specified by the absolute (abs-tree-spec) or
relative (rel-tree-spec) tree specification which is string containing a set ({...}) of slash-separated
(.../...) paths of component names. In other words, the specification has to follow the following
grammar:

abs-tree-spec::="/" rel-tree-spec
rel-tree-spec ::=path | "{" path ("," path)* "}"
path ::=rel-tree-spec | name ("/" name)*
name ::=/^[^\/]+$/

For instance, the specification foo/{bar/baz,quux} is the tree consisting of the two maximum
length paths: foo/bar/baz and foo/quux. For each name from left-to-right in the tree specification
you have to give either a to be instantiated class constructor (Function) or an already instantiated
object (Object).

The create() method returns the last created component, i.e., the right-most component in the tree
specification.

cs.create("/{sv,ui/{one,two}}", my.sv, {}, my.ui.one, my.ui.two);
cs.create(this, "model/view", model, view);
cs(this).create("model/view", model, view);

ComponentJS.destroy(abs-path: String): Void

component.destroy(): Void

component.destroy(): Void

Destroy the component uniquely identified by abs-path or the component on which this method is
called upon.

cs.destroy("/foo/bar")
cs.destroy(comp, "foo/bar")
cs("/foo/bar").destroy()

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 6 / 24



Component Information
Components carry a few distinct information. They can be accessed via the following getter/setter-style
methods.

component.id(): String

component.id(id: String): String

Get current unique id of component or set new id on component and return the old id. Setting the id
of a component should be not done by the application as it is done by ComponentJS internally on
component creation time.

cs(this).id() → "0000000000000000000000000000001"

component.name(): String

component.name(name: String): String

Get current non-unique name of component or set new name on component and return the old
name. Setting the name of a component should be not done by the application as it is done by
ComponentJS internally on component creation time.

cs("/foo/bar").name() === "bar"

component.obj(): Object

Retrieve the backing Object object to the corresponding Component.

cs(this).obj() === this

component.cfg(): Array(String)

component.cfg(key: String): Object

component.cfg(key: String, value: Object): Object

component.cfg(key: String, undefined): Object

Components can have key/value pairs attached for application configuration purposes. Four use
cases exists for this method: 1. get array of all key strings, 2. get current configuration property
identified by key, 3. set configuration property identified by key to new value value and return the
old value, and 4. delete the configuration property identified by key.

var value = cs("/foo/bar").cfg("quux")
cs("/foo/bar").cfg("quux", value)
cs("/foo/bar").cfg("quux", undefined)

Component Lookup
Before performing certain operations on a component, it first have to be looked up in the component tree. As
this is one of the most prominent functionalities of ComponentJS, it is directly exposed through the global API
symbol.

ComponentJS(abs-path: string): Component

ComponentJS(component: Component, rel-path: String): Component

ComponentJS(object: Object, rel-path: String): Component

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 7 / 24



ComponentJS(component: Component): Component

ComponentJS(object: Object): Component

Components can be looked up by absolute/relative paths from root/base components. A path is a
string of slash-separated component names with four special names allowed: "." for current
component name, ".." for parent component name, "*" for any component name and an empty
name (C) for any component trees between current and following components. In any case, the
result has to uniquely identify a single component. The following usages exist: 1. Lookup Component
by absolute path path (this is usually never done explicitly, but occurs implicitly if the input
parameter is already a Component). 2. Lookup Component by path path, relative to Component
component. 3. Lookup Component by path path, relative to the Component corresponding to Object
object. 4. Lookup Component object via backing object object. 5. Lookup Component object via the
component itself (no-operation). The paths have to follow the following grammar:

abs-path::="/" rel-path
rel-path ::=name ("/" name)*
name ::="" | "*" | /^[^\/]+$/

cs("/foo/bar")           /* absolute */
cs(comp, "model/view")   /* relative to component */
cs(this, "model/view")   /* relative to component via backing object */
cs("//bar")              /* full-tree lookup */
cs(comp, "//bar")        /* sub-tree lookup */
cs(this, "*/view")       /* wildcard lookup */
cs(this, "..//view")     /* parent sub-tree lookup */

component.exists(): Boolean

Check whether a (usually previously looked up) component (either a real existing on or the special
pre-existing singleton component with name "<none>") really exists in the component tree.

if (cs("//quux").exists()) ...
if (cs("//quux").name() !== "<none>") ...

Component Tree
Components are managed within a component tree. The following functions allow you to traverse this tree.

component.path(): Array(Component)

component.path(separator: String): String

Either retrieve as an array all Components from the current component up to and including the root
component, or get the slash-separated component name path String from the root component down
to and including the current component.

cs("/foo/bar").path("/") → "/foo/bar"
cs("/foo/bar").path() → [ cs("/foo/bar"), cs("/foo"), cs("/") ]

component.parent(): Component

Return the parent component of component, or null if component is the root or none component.

cs(this).parent() === cs(this, "..")

component.children(): Array(Component)

Return the array of child components of component.

cs(this).children()

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 8 / 24



component.attach(parent: Component): Void

Attach component as a child to the parent component. In case it is already attached to an old parent
component, it automatically calls detach() before attaching to the new parent component. Internally
used by ComponentJS on create(), but can be also used by application when moving a sub-tree
within the component tree.

/*  migrate all children from our view1 onto our view2  */
var view1 = cs(this, "model/view1")
var view2 = cs(this, "model/view2")
view1.children().forEach(function (child) {

var state = child.state({ state: "created", sync: true })
child.detach()
child.attach(view2)
child.state(state)

})

component.detach(): Void

Detach component as a child from its parent component. Internally used by ComponentJS on
destroy(), but can be also used by application when moving components within the component tree.

cs(this).detach()

component.walk_up(callback: Function, ctx: Object): Object

Walk the component tree upwards from the current component (inclusive) to the root component
(inclusive). The callback Function has to be of signature callback(depth: Number, component:
Component, ctx: Object): Object and for each component it is called like "ctx = callback(depth++,
comp, ctx)" where initially ctx=ctx, comp=component and depth=0 was set.

var path = cs(this).walk_up("", function (depth, comp, ctx) {
return "/" + comp.name() + ctx;

}, "")

component.walk_down(callback: Function, ctx: Object): Object

Walk the component tree downwards from the current component (inclusive) to all the transitive
child components (inclusive). The callback Function has to be of signature callback(ctx: Object,
component: Component, depth: Number, depth_first: Boolean): Object and for each component it is
called twice(!): once like "ctx = callback(depth, comp, ctx, false)" when entering the
component (before all children will be visited) and once like "ctx = callback(depth, comp, ctx,
true)" when leaving a component (after all children were visited). Initially ctx=ctx, comp=component
and depth=0 is set.

var output = cs(this).walk_down(
function (depth, comp, output, depth_first) {

if (!depth_first) {
for (var n = 0; n < depth; n++)

output += "    ";
output += "\"" + comp.name() + "\"\n";

}
return output;

},
"")

States
Components, during their life-cycle, are in various particular states. Components can be triggered to change
their state. During those state transitions, enter and leave methods are called accordingly.

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 9 / 24



ComponentJS.transition(null)

ComponentJS.transition(target: String, enter: String, leave: String, color: String, [source:
String])

ComponentJS.transition({ target: String, enter: String, leave: String, color: String,
[source: String] })

Clear all (if passed just a single null parameter) or add one state transition to target state target,
either at the top of the transition stack or in the middle, above the source state source. When
entering the target state, the optional component backing object method enter is called. When
leaving the target state, the optional component backing object method leave is called. The color is
a "#RRGGBB" string used for visualizing the state in the debugger view. The default state transition
definitions are given as an example.

cs.transition(null);
cs.transition("created",      "create",  "destroy",  "#cc3333");
cs.transition("configured",   "setup",   "teardown", "#eabc43");
cs.transition("prepared",     "prepare", "cleanup",  "#f2ec00");
cs.transition("materialized", "render",  "release",  "#6699cc");
cs.transition("visible",      "show",    "hide",     "#669933");
cs.transition("enabled",      "enable",  "disable",  "#336600");

component.state(): String

component.state(state: String[, func: Function]): String

component.state({ state: String, [func: Function = undefined,] [sync: Boolean = false,]
[min: Boolean = undefined,] [max: Boolean = undefined] }): String

Determine the current state or request a transition to a new state of component. By default a state
transition is performed asynchronously, but you can request a synchronous transition with sync. For
asynchronous transitions you can await the transition finish with func. The old state is returned on
state transitions. On each state transition, for each transitively involved component and each target
or intermediate state, a non-capturing/non-bubbling event is internally published named
"ComponentJS:state:state:enter" (after the higher state state was entered from the state below
it) or "ComponentJS:state:state:leave" (after the higher state state was left towards the state
below it). You can subscribe to those in order to react to state transitions from outside the
component, too. By default if the current and requested state of component is just different, the
current state is transitioned towards the requested state. Setting parameter min to true skips the
transition if the current state is already higher or equal to the requested state. Setting parameter
max to true skips the transition if the current state is already lower or equal to the requested state.

cs("/ui").state("visible")

component.state_compare({ state: String }): Number

component.state_compare(state: String): Number

Compare the state of component with state. If component is in a lower state than state, a negative
number is returned. If component is in same state than state, a zero is returned. If component is in
a higher state than state, a positive number is returned.

if (cs(this).state_compare("visible") < 0) ...

component.state_auto_increase(increase: Boolean): Boolean

component.state_auto_increase(): Boolean

Get or set component component to automatically transition to same higher/increased state than its
parent component.

cs(this).state_auto_increase(true)

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 10 / 24



component.state_auto_decrease(decrease: Boolean): Boolean

component.state_auto_decrease(): Boolean

Get or set component component to automatically transition to same lower/decreased state than its
child components. Notice that this means that a child can drag down the parent component and this
way implicitly also all of its other sibling child components. Hence, use with care!

cs(this).state_auto_decrease(true)

component.guard({ method: String, level: Number }): Void

component.guard(method: String, level: Number): Void

Guard component component from calling the state enter/leave method method and this way
prevent it from entering/leaving the corresponding state. The level can be increased and
decreased. Initially it should be set to a positive number to activate the guard. Then it should be set
to a negative number to (potentially) deactivate the guard. A usage with an initial call of +1 and then
followed by a -1 is a boolean guard. An initial call of +N and then followed by N times a -1 call is a
Semaphore-like guard which ensures that only after the Nth -1 call the guard is finally deactivated
again. This is useful if you activate the guard in order to await N asynchronous operations. Then the
guard should be deactivated once the last asynchronous operation is finished (independent which
one of the N operations this is). A guard level of 0 resets the guard, independent what its current
level is.

var self = this;
cs(self).guard("render", +2)
$.get(url1, function (data) {

self.data1 = data;
cs(self).guard("render", -1)

});
$.get(url2, function (data) {

self.data2 = data;
cs(self).guard("render", -1)

});

Spools
In ComponentJS there are at least 4 resource allocating operations which have corresponding deallocation
operations: Model observe()/unobserve(), Socket plug()/unplug(), Event subscribe()/unsubscribe(), Service
and register()/unregister(). For correct run-time operation it is required that each allocation operation,
performed in a state enter method, is properly reversed with the corresponding deallocation operation in the
state leave method. As this is extremely cumbersome (especially because you have to store the identifiers
returned by the allocation operations as you need them for the deallocation operation), ComponentJS
provides

• convenient spool mechanism which all of the above allocation operations support and which also can be used
by the
application itself.

component.spool({ name: String, ctx: Object, func: Function, [args: Array(Object) = new
Array()] }): Void

component.spool(name: String, ctx: Object, func: Function, [args: Object, ...]): Void

Remember action "func.apply(ctx, args)" on spool named name. The name parameter can be either
just a plain spool-name "name" or a combination of (relative) component-path and spool-name
"path:name". This allows one to spool on a component different from component (usually a relative
path back to the component of the caller of the spool() operation).

cs(this).spool({
name: "foo",
ctx: this,

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 11 / 24



func: function (num, str) { ... },
args: [ 42, "foo" ]

});

component.spooled({ name: String }): Number

component.spooled(name: String): Number

Return the number of actions which are spooled under spool named name. Usually done before
calling unspool() as it would throw an exception if there are no spooled actions at all.

if (cs(this).spooled("foo"))
cs(this).unspool("foo")

component.unspool({ name: String }): Void

component.unspool(name: String): Void

Perform all actions previously spooled on spool name in reverse spooling order (those spooled last are
executed first).

release: function () {
cs(this).unspool("materialized")

}

Markers
An object can be "marked" with a set of names. ComponentJS internally does not use those markers at all, but
the ComponentJS Debugger plugin at least uses markers named "service", "model", "view" and "controller" on

• components' backing object to render those components in different colors.

ComponentJS.mark(obj: Object, name: String): Void

component.mark(name: String): Void

Mark object obj with marker named name. An arbitrary number of markers can be added to an
object. An an alternative and for convenience reasons, but only if the component classes are defined
through ComponentJS' optional Class/Trait system, the traits
cs.marker.{service,model,view,controller} can be mixed into.

app.ui.panel.view = cs.clazz({
create: function () {

cs(this).mark("view");
}
...

});

app.ui.panel.view = cs.clazz({
mixin: [ cs.marker.view ]
...

});

ComponentJS.marked(obj: Object, name: String): Boolean

component.marked(name: String): Boolean

Checks whether object obj is marked with marker named name. This is usually interesting for
ComponentJS plugin developers only.

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 12 / 24



if (cs("/").marked("controller")) {
...

}

Properties
Every component can have an arbitrary number of key/value based properties attached to it. The keys have
to be of type String, the values can be of any type. A property is set on a target component but is resolved on
both the target component and all parent components (up to and including the root component). This way
properties feel like inherited and overrideable values which can be used for both storing component-local
information and to communicate information to foreign components.

component.property({ name: String, [value: Object = undefined,] [def: Object =
undefined,] [scope: String = undefined,] [bubbling: Boolean = true,] [targeting: Boolean
= true,] [returnowner: Boolean = false] }): Object

component.property(name: String, value: Object): Object

component.property(name: String): Object

Get or set property with name name and value value on component component. If bubbling is set to
false a property get operation does not resolve on any parent components ("it does not bubble up
to the root"). If targeting is set to false a property get operation does not resolve on the target
component component (resolving starts on parent component). If returnowner is set to true instead
of the property value, the owning component is returned. Finally, properties can be scoped with a
child component name or even a descendant component name path: on each attempt to resolve the
property, first the scoped variants are tried. This means, if a property was set with name "quux@bar"
(or with name "quux" and an explicitly scope set to "bar") on component /foo, if you resolve the
property with cs("/foo/bar", "quux") you get the value, but if you resolve the property with
cs("/foo/baz", "quux") you do not get the value. This allows you to set the same property with
different values for different child components. Additionally the scope can be a partial component
path, too. If a property was set with name "quux@bar/baz" on component /foo, if you resolve the
property with cs("/foo/bar/baz", "quux") you get the value, but if you resolve the property with
cs("/foo/bar/baz2", "quux") you do not get the value. This allows you for instance to skip so-
called intermediate namespace-only components. Setting value to "null" removes the property. If
no property name is found at all, def (by default the value undefined) is returned.

cs(this).property("foo")

Sockets
Sockets are a special form of component Properties with callback functions as the values. They are intended
to link Views of child/descendant components into the View of a parent/ancestor component. In contrast to
regular Properties, Sockets are never resolved directly on the target component. Instead they always start to
resolve on the parent component because the sockets on the target component are intended for its child/
ancestor components and not for the target component itself. So, please remember to never plug a socket
directly onto the target component!

component.socket({ [name: String = "default",] [scope: Object = null,] ctx: Object,
plug: Function, unplug: Function [, spool: String] }): Number

component.socket(ctx: Object, plug: Function, unplug: Function): Number

Create a socket on component, named name and optionally scoped for the child component named
scope, where plug() and unplug() calls on child/ancestor components execute the supplied
plug/unplug functions with ctx supplied as this, the object parameter of plug()/unplug() as first
argument and component as the second argument. The socket() method returns an id which
uniquely identifies the socket. Instead of having to manually release the socket later via unsocket()

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 13 / 24



you can use the spool mechanism and spool the corresponding unsocket() operation via option
spool.

var ui = $(...);
cs(this).socket({

ctx:    ui,
plug:   function (el) { $(this).append(el); },
unplug: function (el) { $(el).remove(); }

})

component.unsocket({ id: Number }): Void

component.unsocket(id: Number): Void

Destroy the socket identified by id, previously created by a call to socket(). This is usually done
implicitly through the spooling mechanism.

cs(this).unsocket(id)

component.link({ [name: String = "default",] [scope: Object = null,] target: Object,
socket: String [, spool: String] })

component.link(target: Object, socket: String)

Create a socket on component, named name and optionally scoped for the child component named
scope, and pass-through the plug()/unplug() calls to the target component target and its socket
named socket. Usually used by Controller components to link their default socket (for the View
below itself) to a particular socket of a parent component (because a View should be reusable and
hence is not allowed to know the particular socket intended for it). The link() method returns an id
which uniquely identifies the linked socket. Instead of having to manually release the socket later via
unlink() you can use the spool mechanism and spool the corresponding unlink() operation via
option spool.

cs(this).link({ name: "default", target: this, socket: "menu1" })

component.unlink({ id: Number }): Void

component.unlink(id: Number): Void

Destroy the linked socket identified by id, previously created by a call to link(). This is usually done
implicitly through the spooling mechanism.

cs(this).unlink(id)

component.plug({ [name: String = "default",] object: Object, [spool: String,]
[targeting: Boolean] }): Number

component.plug(object: Object): Number

Plugs object into the socket named name provided by any parent/ancestor component of
component. Optionally spool the corresponding unplug() operation on spool spool attached to
component. Optionally (in case of targeting set to true) start the operation on component instead
of its parent component. Returns an identifier for use with the corresponding unplug() operation.

cs(this).plug({ object: ui, spool: "materialized" })

component.unplug({ id: Number[, targeting: Boolean] }): Void

component.unplug(id: Number): Void

Unplugs the object previously plugged under id from the socket providing parent/ancestor
component of component. Optionally (in case of targeting set to true) start the operation on
component instead of its parent component. This is usually performed indirectly through the Spool
mechanism.

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 14 / 24



cs(this).unplug(id)

Models
When using Model/View/Controller roles for components, the Model component needs a so-called Presentation
Model: an abstraction of presentation onto which both View and Controller components attach via Observer
pattern. The Controller component for provisioning business information into the Model and triggering
business services upon Model changes. The View component for displaying the Model information and storing
events into it.

component.model(spec: Object): Object

Define a model through the specification in spec. Each key is the name of a model element and the
value has to be an Object with the following possible fields: value (Object) for the default value,
valid (String/RegExp) for validating the values (based on the underlying validation language of the
validate() method), autoreset (Boolean) for indicating that on each value write, the value should
be automatically reset to the initial value, and store (Boolean) for indicating that the value should
be persistently stored in the browser's localStorage. Multiple calls to the model() method on the
same component incrementally add model elements.

cs(this).model({
"param:realms":         { value: [],      valid: "[string*]" },
"data:realm":           { value: "",      valid: "string", store: true },
"data:username":        { value: "",      valid: "string", store: true },
"data:password":        { value: "",      valid: "string" },
"state:username":       { value: "empty", valid: "string" },
"state:username-hint":  { value: "",      valid: "string" },
"state:password":       { value: "empty", valid: "string" },
"state:password-hint":  { value: "",      valid: "string" },
"state:hashcode-col":   { value: 0,       valid: "number" },
"state:hashcode-txt":   { value: "",      valid: "string" },
"state:button-enabled": { value: false,   valid: "boolean" },
"event:button-clicked": { value: false,   valid: "boolean", autoreset: true }

})

component.value({ name: String, [op: String,] [value: Object,] [force: Boolean,]
[injected: Boolean] })

component.value(name: String, [value: Object,] [force: Boolean])

Get the value of component's model element named name or set the value of component's model
element named name to value. As each value change causes observers to be triggered, by default
changing a value to the same value does not trigger anything. But if force is true even setting a
model element to its current value triggers observers. Setting the option injected to true should be
done by plugins only and prevents model value observers from rejecting the (already injected) value.

var val = cs(this).value("foo")
cs(this).value("foo", "bar")

If you store arbitrary sub-structured values, you can make name a path full specification based on the
language supported by the select() method:

var val = cs(this).value("foo.bar[1].baz['the-quux'])
cs(this).value("foo.bar[1].baz['the-quux']", "bar")

In addition to the basic get/set operations on scalar values, you can also use array and hash
operations on collections by using the op option. Supported op values are "get", "set",
["splice",offset,remove], "delete", "push", "pop", "unshift" and "shift". The last four array
operations are internally translated to the corresponding splice operation. The arguments to the
splice operation are the same as for JavaScript's Array.prototype.splice: "offset" is the 0-based
offset into the array to operate at and "remove" is the number of elements to remove at "offset"

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 15 / 24



(before the value is added). The operations get/set/delete operate on collection elements while the
operations splice/push/pop/unshift/shift operate on collections, hence you have to provide a
path in name which is suitable for them. The operations get/set/delete can operate on both array
and hash elements while splice/push/pop/unshift/shift can operate on array objects only.

To illustrate the functionality see the following comparisons between the standard JavaScript variable
access code and the ComponentJS model value access code.

First, working with scalars:

//  val = foo.bar
val = cs(this).value("foo.bar")
val = cs(this).value({ name: "foo.bar", op: "get" })

//  foo.bar = "quux"
cs(this).value("foo.bar", "quux")
cs(this).value({ name: "foo.bar", op: "set", value: "quux" })

Second, working with Arrays:

//  foo.bar = []
cs(this).value("foo.bar", [])
cs(this).value({ name: "foo.bar", value: [] })

//  len = foo.bar.length
len = cs(this).value("foo.bar").length

//  val = foo.bar[42]
val = cs(this).value("foo.bar[42]")
val = cs(this).value({ name: "foo.bar[42]", op: "get" })

//  foo.bar[42] = "quux"
cs(this).value("foo.bar[42]", "quux")
cs(this).value({ name: "foo.bar[42]", op: "set", value: "quux" })

//  foo.bar.splice(1, 0, "quux")
cs(this).value({ name: "foo.bar", op: [ "splice", 1, 0 ], value: "quux" })

//  foo.bar.push("foo")
cs(this).value({ name: "foo.bar", op: "push", value: "foo" })

//  val = foo.bar.pop()
val = cs(this).value({ name: "foo.bar", op: "pop" })

//  foo.bar.unshift("bar")
cs(this).value({ name: "foo.bar", op: "unshift", value: "bar" })

//  val = foo.bar.shift()
val = cs(this).value({ name: "foo.bar", op: "shift" })

Third, working with hashes:

//  foo.bar = {}
cs(this).value("foo.bar", {})
cs(this).value({ name: "foo.bar", value: {} })

//  keys = Object.keys(foo.bar)
keys = Object.keys(cs(this).value("foo.bar"))

//  val = foo.bar.baz
//  val = foo.bar["baz"]
val = cs(this).value("foo.bar.baz")
val = cs(this).value("foo.bar['baz']")
val = cs(this).value({ name: "foo.bar.baz",    op: "get" })
val = cs(this).value({ name: "foo.bar['baz']", op: "get" })

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 16 / 24



//  foo.bar.baz = "quux"
//  foo.bar["baz"] = "quux"
cs(this).value("foo.bar.baz",    "quux")
cs(this).value("foo.bar['baz']", "quux")
cs(this).value({ name: "foo.bar.baz",    op: "set", value: "quux" })
cs(this).value({ name: "foo.bar['baz']", op: "set", value: "quux" })

//  delete foo.bar.baz
//  delete foo.bar["baz"]
cs(this).value({ name: "foo.bar.baz",    op: "delete" })
cs(this).value({ name: "foo.bar['baz']", op: "delete" })

component.touch({ name: String, })

component.touch(name: String)

Touches the value of component's model element named name, without changing the value but with
triggering all its "set" observers (its "changed" observers are not triggered). This can be useful for
firing "set" observers manually.

cs(this).touch("foo")

component.observe({ name: String, func: Function, [touch: Boolean = false,] [boot:
Boolean = false,] [op: String = "set",] [spool: String = null,] [noevent: Boolean = false]
}): Number

component.observe(name: String, func: Function): Number

Observe the value of component's model element named name for op operations (by default "set"
operations). For "get" operations, the callback function func has to be of signature func(ev: Event,
value: Object): Void. For "set" (and "splice", "delete", "push", "pop", "unshift", "shift") and "changed"
operations, the callback function func has to be of signature func(ev: Event, value-new: Object,
value-old: Object, op: Object, path: String): Void. Both types of callbacks can override the value by
using ev.result(value). The observe() method returns an id which uniquely identifies the
observation. Instead of having to manually release the observation later via unobserve() you can use
the spool mechanism and spool the corresponding unobserve() operation via spool. Option noevent
(similar to the same option for subscribe()) prevents the passing of the event parameter ev to the
callback function func in case you don't need it. Option touch causes observe() to execute touch()
internally at the end of its observation registration operation for bootstrapping purposes. This
indirectly causes the callback function func (and also all other observers) to execute. Option boot
causes observe() to execute the callback function func once at the end of its observation
registration operation for bootstrapping purposes. This explicitly causes the callback function func
(and only func and no other observers) to excecute.

id = cs(this).observe("state:username", function (ev, username) {
...

})

component.unobserve({ id: Number }): Void

component.unobserve(id: Number): Void

Release the observation identified by id, previously acquired by a call to observe(). This is usually
done implicitly through the spooling mechanism.

cs(this).unobserve(id)

Events
The Event mechanism is a central one in ComponentJS. Both Models and Services are internally based on the
Events mechanism. An Event is an object published towards a target component. It is delivered in 4 phases:

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 17 / 24



• In phase 1 (the "capturing" phase) the Event is delivered to all components on the path from the root
component (inclusive) towards the target component (exclusive).

• In phase 2 (the "targeting" phase) the Event is delivered to the target component.
• In phase 3 (the "spreading" phase) the Event is delivered to all descendant components of the target

component in a depth-first traversal order.
• In phase 4 (the "bubbling" phase) the Event is delivered (again) to all components on the path from

the target component (exclusive) to the root component (inclusive).

Event objects are implicitly created by the publish() operation and they provide various getter/setter
methods:

• target() (Component): target component the event is send to
• propagation() (Boolean): whether event propagation should continue
• processing() (Boolean): whether final default event processing should be performed
• dispatched() (Boolean): whether event was dispatched at least once to a subscriber
• decline() (Boolean): whether event was declined by subscriber
• state() (Boolean): state of dispatching: capturing, targeting, spreading or bubbling
• result() (Object): optional result value event subscribers can provide
• async() (Boolean): whether event is dispatched asynchronously

component.subscribe({ name: String, [spec: Object = {}], [ctx: Object = component,]
func: Function, [args: Object[] = []], [capturing: Boolean = false], [spreading: Boolean =
false], [bubbling: Boolean = true], [noevent: Boolean = false], [exclusive: Boolean =
false], [spool: String = null] }): Number

component.subscribe(name: String, func: Function, [args: Object, ...]): Number

Subscribe to event name (optionally sub-specified via spec) on component component and execute
callback func as func(ev: Event , args: Object, ..., sargs: Object, ...) once the event is
dispatched to component after it was published. By default an event is dispatched in the
(mandatory) targeting and (optional) bubbling phases.

◦ Option ctx allows you to give "this" a particular value for the callback func. Option args
allows you to pass additional parameters to func (before those passed by publish().

◦ Option noevent does not pass the ev: Event parameter to func.
◦ Setting option capturing to "true" indicates that the event should be also dispatched in

the capturing phase.
◦ Setting option spreading to "true" indicates that the event should be also dispatched in

the spreading phase.
◦ Setting option bubbling to "false" indicates that the event should not be dispatched in the

bubbling phase.
◦ Option exclusive can be set to "true" for an exclusive subscription, i.e., a subscription

which prevents any subsequent subscriptions.

The subscribe() method returns an id which uniquely identifies the subscription. Instead of having
to manually release the subscription later via unsubscribe() you can use the spool mechanism and
spool the corresponding unsubscribe() operation via option spool.

cs(self).subscribe({
name: "data-loaded",
spool: "prepared",
func: function (ev, data, info) {

...
}

})

component.unsubscribe({ id: Number }): Void

component.unsubscribe(id: Number): Void

Release the subscription identified by id, previously acquired by a call to subscribe(). This is usually
done implicitly through the spooling mechanism.

cs(this).unsubscribe(id)

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 18 / 24



component.publish({ name: String, [spec: Object = {},] [async: Boolean = false,]
[capturing: Boolean = true,] [spreading: Boolean = false,] [bubbling: Boolean = true,]
[completed: Function,] [resultinit: Object = undefined,] [resultstep: Function,]
[directresult: Boolean = false,] [noresult: Boolean = false,] [firstonly: Boolean =
false,] [silent: Boolean = false,] [args: Object[] = []] }): Object

component.publish(name: String, args...: Object): Object

Publishes an Event to component component named name and with optional arguments args. By
default the event is intended to be dispatched in the (mandatory) targeting and (optional) capturing
and bubbling phases. The following options allow you to further control the event publishing process:

◦ Option spec allows you to sub-specify/parametrize the event with arbitrary key/value pairs
in case the name is too generic.

◦ Option async allows the event processing to occur asynchronously.
◦ Setting option capturing to "false" indicates that the event should not be intended to be

dispatched in the capturing phase.
◦ Setting option spreading to "true" indicates that the event should also be intended to be

dispatched in the spreading phase.
◦ Setting option bubbling to "false" indicates that the event should not be intended to be

dispatched in the bubbling phase.
◦ Option completed executes the specified callback function once the event was dispatched

to subscribers in all possible phases. This allows you to react at the end of async=true
events.

◦ Option resultinit and resultstep

cs(this).publish("data-loaded", data, info)

Services
Services are loosely coupled method calls across components. The functionality provider does register() the
service and the functionality consumer does call() the service.

component.register({ name: String, [ctx: Object = component,] func: Function, [args:
Object[] = [],] [spool: String,] [capturing: Boolean = false,] [spreading: Boolean =
false,] [bubbling: Boolean = true] }): Number

component.register(name: String, func: Function): Number

Register a service name on component with the implementing callback function func. The function
returns an identifier for unregister(). The following options can be used to control the later service
calls:

◦ Option ctx can be used to set the this pointer for func.
◦ Option args can be used to pass additional parameters to func (before the args of call()!).
◦ Option spool can be used to spool the corresponding unregister() call.
◦ Option capturing can be set to true to provide the service also in the "capturing" phase.
◦ Option spreading can be set to true to provide the service also in the "spreading" phase.
◦ Option bubbling can be set to false to not provide the service in the "bubbling" phase.

var id = cs(this).register({
name: "load-entity",
args: [ em ],
func: function (em, clazz, id) {

return em.findById(clazz, id);
}

})

component.unregister({ id: Number }): Void

component.unregister(id: Number): Void

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 19 / 24



Release the registration identified by id, previously acquired by a call to register(). This is usually
done implicitly through the spooling mechanism.

cs(this).unregister(id)

component.callable({ name: String[, value: Boolean] }): Boolean

component.callable(name: String[, value: Boolean]): Boolean

Checks whether a registered service is callable/enabled or enable/disable a registered service. On
every change to the "callable" status of a service, an internal event named
"ComponentJS:service:name:callable" is published with two arguments: the new and old boolean
value.

cs(this).subscribe("ComponentJS:service:load-person:callable", function (old, new) {
if (new) {

/* react on now callable service  */
}

})
cs(this).callable("load-person", false)
cs(this).callable("load-person", true)

component.call({ name: String, [args: Object[] = [],] capturing: Boolean = false,]
spreading: Boolean = false,] bubbling: Boolean = true] }): Object

component.call(name: String [, args...: Object]): Object

Call service named name on component component, optionally passing it the arguments args (after
the optional args of register()!). The following options can be used to control the service call:

◦ Option capturing can be set to true to deliver the underlying service event also in the
"capturing" phase.

◦ Option spreading can be set to true to deliver the underlying service event also in the
"spreading" phase.

◦ Option bubbling can be set to false to not deliver the underlying service event in the
"bubbling" phase.

var person = cs("/sv").call("load-entity", "Person", 42)

Test-Driving
ComponentJS has optional support for test-driving an application, based on asynchronously executed use-
cases with the help of its testdrive plugin.

ComponentJS.suite(): Void

Notice: requires ComponentJS plugin testdrive to be loaded!

Notice: requires external library jQuery to be loaded!

Open the interactive dialog of use-cases which can be driven. Usually this is executed from within
the application itself (in case the test-drive functionality is used for something like UI macros) or
through an external bookmark.

/*  open test-drive suite from within application  */
if (cs.plugin("testdrive"))

cs.suite();

[new] ComponentJS.promise(): Promise

[new] ComponentJS.promise(executor: Function): Void

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 20 / 24



Notice: requires ComponentJS plugin testdrive to be loaded!

Return a Promise/A+ based promise, internally backed by an embedded "Thenable" implementation.
The alternative usage with an executor (of type "(fulfill: (value?: any) => Promise, reject:
(value?: any) => Promise) => void" in TypeScript definition syntax) avoids a temporary variable.

/*  standard usage  */
var promise = new $cs.promise();
doSomethingAsync(

function onSuccess (msg) { promise.fulfill(msg); },
function onError   (err) { promise.reject(err);  }

);
return promise.proxy;

/*  alternative usage (regular)  */
return new $cs.promise(function (fulfill, reject) {

doSomethingAsync(
function onSuccess (msg) { fulfill(msg); },
function onError   (err) { reject(err);  }

);
}).proxy;

/*  alternative usage (compact)  */
return $cs.promise(function (fulfill, reject) {

doSomethingAsync(fulfill, reject);
}).proxy;

ComponentJS.usecase({ name: String, desc: String, [conf: Object,] func: Function }): Void

ComponentJS.usecase(name: String, desc: String, func: Function): Void

Notice: requires ComponentJS plugin testdrive to be loaded!

Define a single use-case of unique name name, with description desc, default configuration conf and
the use-case executing function func (of type "() => void" in TypeScript definition syntax). The
name is used for driving the use-case with drive() and conf can be overwritten with drive(). The
function func can either execute synchronously or asynchronously. In case of a synchronous
execution, the return value of func does not matter. In case of an asynchronous execution, the
return value of func has to be a Promise/A+ based promise (usually created with ensure(), await(),
drive or poll implicitly, or with promise() explicitly). The callback function receives the actual
configuration as the first parameter.

if (cs.plugin("testdrive")) {
cs.usecase("reset", "reset all login dialogs", function () {

return cs.ensure("/ui/panel/model", "prepared").then(function (comp) {
comp.value("event:reset", true);

});
});
cs.usecase({

name: "login",
desc: "fill out a login dialog",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

return cs.ensure("//login" + conf.num + "/model", "prepared")
.then(function (comp) {
comp.value("data:realm", conf.realm);
comp.value("data:username", conf.username);
comp.value("data:password", conf.password);
comp.value("event:login-requested", true);

});
}

});
cs.usecase({

name: "awaitStatus",

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 21 / 24



desc: "await the status to show a particular text",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

var re = new RegExp("login from \".*login" + conf.num +
"\" with realm \"" + conf.realm + "\", username \"" +
conf.username + "\" and password \"" + conf.password + "\"");

return cs.poll(function (fulfill, reject) {
return $("div.status").text().match(re);

}, function () {
return cs.once($("div.status"), "mutation");

});
}

});
cs.usecase("all", "fill out all login dialogs", function () {

return cs.drive("reset")
.then(function () { return cs.drive("login",       { num: 2 }); })
.then(function () { return cs.drive("awaitStatus", { num: 2 }); })

});
}

ComponentJS.drive({ name: String, [conf: Object,] [timeout: Number] }): Promise

ComponentJS.drive(name: String, [conf: Object,] [timeout: Number]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Drive a single use-case name, with optional configuration conf and a run-time timeout of timeout (by
default 10*1000) milliseconds. The function returns a Promise/A+ promise which is either fulfilled
(with dummy value true) or rejected with an error message.

cs.drive("login", { num: 3 }, 2*1000).then(null, function (e) {
alert("failed to login");

});

ComponentJS.ensure({ path: String, state: String, [min: Boolean = true,] [max: Boolean =
false,] [sync: Boolean = false] }): Promise

ComponentJS.ensure(path: String, state: String): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Ensure that a component under path reaches a particular state which is at least (in case of min =
true), and/or at most (in case of max = true) a particular state, by synchronously (in case of sync =
true) or asynchronously (by default), triggering a state change on the component under path. The
state change is explicitly trigger by ensure() itself. The function returns a Promise/A+ promise which
is either fulfilled with the component object corresponding to path or rejected with an error
message.

cs.ensure({ path: "//login1/model", state: "prepared", min: true })
.then(function (comp) {

comp.value("data:username", "foo");
});

ComponentJS.await({ path: String, state: String, [direction: String = "enter"] }):
Promise

ComponentJS.await(path: String, state: String, [direction: String = "enter"]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Awaits that a component under path reaches a particular state, either on enter (in case of
direction = "enter") or leave (in case of direction = "enter"). The enter/leave methods of the
component will be already called in both cases. The component under path is NOT required to
already exist. It is allowed that it springs into existence later. There is NO state change trigger by

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 22 / 24



await() itself. The function returns a Promise/A+ promise which is either fulfilled with the component
object corresponding to path or rejected with an error message.

cs.await({ path: "//login1/model", state: "prepared" }).then(function (comp) {
comp.value("data:username", "foo");

});

ComponentJS.poll({ check: Function, [wait: Function,] [max: Number = 600] }): Promise

ComponentJS.poll(check: Function, [wait: Function,] [max: Number = 600]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Polls for a situation to occur by checking its occurance condition with check (of type () = Boolean>
in TypeScript definition syntax) and in case of a still false return waits through wait and repeat from
the beginning with a new round with check. The wait function has to be of type "() => Promise"
and usually delays processing (usually with setTimeout()) and then resolves. If you pass a Number
instead of a Function to wait, a default implementation is used which waits the number of
milliseconds. The default for wait is 100, i.e., it internally maps onto "function () { return
cs.sleep(100); }".

cs.usecase({
name: "awaitStatus",
desc: "await the status to show a particular text",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

var re = new RegExp("login from \".*login" + conf.num +
"\" with realm \"" + conf.realm + "\", username \"" +
conf.username + "\" and password \"" + conf.password + "\"");

return cs.poll(function (fulfill, reject) {
return $("div.status").text().match(re);

}, function () {
return cs.once($("div.status"), "mutation");

});
}

});

ComponentJS.sleep({ ms: Number, }): Promise

ComponentJS.sleep(ms: Number): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Sleeps a certain amount of milliseconds (with setTimeout()) and then resolves the promise which is
returned by this function.

cs.sleep(100).then(function () { ... })

ComponentJS.once({ selector: String/Object, events: String, [subselector: String = null]
}): Promise

ComponentJS.once(selector: String/Object, events: String, [subselector: String = null]):
Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Notice: requires external library jQuery to be loaded!

Awaits once(!) with jQuery's one() method for a DOM event to occur and then resolves the promise
(with the jQuery event object as the value) this function returns. The three parameters selector,
events and subselector are directly passed through to jQuery by mapping onto the internal call
"jQuery(selector).one(events, subselector, ...)". Additionally, in case events = "mutation"
the function internally uses the HTML5 MutationObserver functionality to await a DOM mutation (in
this case subselector is ignored).

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 23 / 24



cs.once("ul.list", "click", "li").then(function (ev) { ... })

ComponentJS Application Programming Interface (API) 1.2.1

ComponentJS Application Programming Interface (API) 24 / 24


	API Management
	symbol
	version

	Library Management
	bootstrap
	shutdown
	plugin

	Debugging
	debug
	debug_instrumented
	debug_window

	Code Structuring
	ns
	select
	validate
	params
	attribute
	clazz
	trait

	Component Creation
	create
	destroy

	Component Information
	id
	name
	obj
	cfg

	Component Lookup
	ComponentJS
	exists

	Component Tree
	path
	parent
	children
	attach
	detach
	walk_up
	walk_down

	States
	transition
	state
	state_compare
	state_auto_increase
	state_auto_decrease
	guard

	Spools
	spool
	spooled
	unspool

	Markers
	mark
	marked

	Properties
	property

	Sockets
	socket
	unsocket
	link
	unlink
	plug
	unplug

	Models
	model
	value
	touch
	observe
	unobserve

	Events
	subscribe
	unsubscribe
	publish

	Services
	register
	unregister
	callable
	call

	Test-Driving
	suite
	promise
	usecase
	drive
	ensure
	await
	poll
	sleep
	once


