
API Management
Change the API symbol in the global variable namespace under which ComponentJS is exposed. By default
ComponentJS is exposed under the symbol name ComponentJS. It is a common convention to change the
symbol to cs (for "component system/service") to have a convenient short-hand.

ComponentJS.symbol([name: String]): ComponentJS

Change symbol of ComponentJS API to global variable name and return it. If name is not given,
ComponentJS does not occupy any global namespace slot at all — then it is required to store the
return value and use ComponentJS directly through it.

ComponentJS.symbol("cs") /* standard */
var cs = ComponentJS.symbol() /* alternative */

ComponentJS.version = { major: Number, minor: Number, micro: Number, date:
Number }

Access the ComponentJS implementation version "major.minor.micro" and the corresponding
release date (in format YYYYMMDD).

if (ComponentJS.version.date < 20120101)
throw new Error("need at least ComponentJS as of 20120101")

Debugging
ComponentJS has special support for debugging its run-time processing, especially for visualizing the
current component tree in real-time.

ComponentJS.debug(): Number

ComponentJS.debug(level: Number): Void

ComponentJS.debug(level: Number, message: String): Void

Get current debug level, or configure the debugging through maximum debug-level level (0
disables all debug messages, 9 enables all debug messages) or log a particular message under
debug-level level.

cs.debug(0)
if (cs.debug_instrumented()) {

cs.debug(9)
cs.debug_window({ ... })

}

ComponentJS.debug_instrumented(): Boolean

Determine whether the current browser is "instrumented" for debugging, i.e., whether the
browser's built-in debugger is activated (in detached mode only). Currently ComponentJS is able
to determine Firefox's Firebug and Chrome's Inspector only.

if (cs.debug_instrumented()) ...

ComponentJS.debug_window({ enable: Boolean, autoclose: Boolean, name: String,
width: Number = 800, height: Number = 600, natural: Boolean = false })

ComponentJS.debug_window(enable: Boolean, autoclose: Boolean, name: String)

On enable true/false open/close the extra browser window containing the ComponentJS
debugger view for the ComponentJS application identified by name. If autoclose is true,

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 1 / 11

optionally automatically close the debugger window with application window (which usually is
inconvenient during debugging because on application reloads the ComponentJS debugger
window is recreated with default width/height at default position instead of reused). Parameters
width and height can be used to change the initial window size. Parameter natural controls
whether the component tree is drawn with the root component at the bottom (true) or at the top
(false).

cs.debug_window({
enable: true,
autoclose: false,
name "My App"
width: 800,
height: 800,
natural: true

})

Code Structuring
ComponentJS internally uses a few code structuring utility functions for implementing class method
parameters and class attributes. Those utility functions are also exposed for consumption by application
developers, but they are NOT(!) required for using ComponentJS. Especially, it is NOT(!) required that
component shadow objects are defined by cs.clazz!

ComponentJS.ns(path: String[, leaf: Object = {}]): Object

Classes and traits should be structured through namespaces. A namespace is a JavaScript (hash)
object, potentially itself part of a parent namespace object. The top-most implicit namespace
object is window. A namespace has a dot-separated fully-qualified symbol path like
foo.bar.quux. This method allows to create the fully-qualified path of nested objects throught
the dot-separated path of object names, optionally assign the right-most/leaf object to leave and
finally return the right-most/leaf Object.

cs.ns("my.app"); my.app.ui = cs.clazz({ ... }) /* standard */
cs.ns("my.app").ui = cs.clazz({ ... }) /* alternative */
cs.ns("my.app.ui", cs.clazz({ ... }) /* alternative */

ComponentJS.params(name: String, args: Object[], spec: Object): Object

Handle positional and named function parameters by processing a function's arguments array.
Parameter name is the name of the function for use in exceptions in case of invalid parameters.
Parameter args usually is the JavaScript arguments pseudo-array of a function. Parameter spec is
the parameter specification: each key is the name of a parameter and the value has to be an
Object with the following possible fields: pos for the optional position in case of positional usage,
def for the default value (of not required and hence optional parameters), req to indicate whether
the parameter is required and valid for type validation (either the string returned by JavaScript
typeof operator, or the string "array(...)" for arrays or a valid regular expression /.../ for
validating a String against it.

function config () {
var params = $cs.params("config", arguments, {
scope: { pos: 0, req: true, valid: "boolean" },
key: { pos: 1, req: true, valid: /^[a-z][a-z0-9_]*$/ },
value: { pos: 2, def: undefined, valid: "object" },
force: { def: false, valid: "boolean" }

});
var result = db_get(params.scope, params.key);
if (typeof params.value !== "undefined")
db_set(params.scope, params.key, params.value, params.force);

return result;
}
var value = config("foo", "bar");
config("foo", "bar", "quux");
config({ scope: "foo", key: "bar", value: "quux", force: true });

ComponentJS.attribute({ name: String, def: Object, validate: Object }): Function

ComponentJS.attribute(name: String, def: Object, validate: Object): Function

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 2 / 11

Create a clonable attribute capturing getter/setter function with name name (for exception
handling reasons only), the default value def and the value validation validate.

var id = ComponentJS.attribute("id", "foo", /^[a-z][a-zA-Z0-9_]*/);
id() === "foo"
id("bar") → "foo"; id() → "bar"

ComponentJS.clazz({ [name: String,] [extend: Clazz,] [mixin: Array(Trait),]
[constructor: Function,] [dynamics: Object,] [protos: Object,] [statics: Object] })

Define a JavaScript Class, optionally stored under the absolute dot-separated object path name,
optionally extending the base/super/parent Class extend and optionally mixing in the
functionality of one or more Traits via mixin. The class can have a constructor function
constructor which is called once the Class is instanciated and which can further initialize the
dynamic fields of the class. On each instanciation, all fields which are specified with dynamics
are cloned and instanciated and all methods in protos are copied into the Class prototypes
object. The statics content is copied into the Class itself only. In case of extend and/or mixin,
both the constructor and methods of protos can call this.base(...) for the base/super/
parent method.

var foo = cs.clazz({
constructor: function (bar, baz) {
this._bar = bar;
this._baz = baz;

},
dynamics: {
_bar: "bar",
_baz: 42

},
protos: {
bar: function (value_new) {
var value_old = this._bar;
if (typeof value_new !=== "undefined")
this._bar = value_new;

return value_old;
}
[...]

}
})

ComponentJS.trait({ [name: String,] [mixin: Array(trait),] [constructor: Function,]
[setup: Function,] [dynamics: Object,] [protos: Object,] [statics: Object] })

Define a JavaScript Trait (a Class which can be mixed in), optionally stored under the absolute
dot-separated object path name and optionally mixing in the functionality of one or more other
Traits via mixin. The trait can have a constructor function constructor which is called once the
Class the Trait is mixed in is instanciated and which can further initialize the dynamic fields of the
Class. On each instanciation, all fields which are specified with dynamics are cloned and
instanciated and all methods in protos are copied into the Class prototypes object. The
statics content is copied into the Class itself only. The optional setup function is called directly
at the end of Class definition (not instanciation) and can further refine the defined Class.

var foo = cs.trait({
protos: {
bar: function () {
[...]

}
}

})

Component Creation
Components are managed in hierarchical fashion within a component tree. The component tree can be
traversed and its components can be created, looked up, state transitioned, communicated on and be
destroyed.

ComponentJS.create(abs-tree-spec: String, class: Class[, ...]): Object

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 3 / 11

ComponentJS.create(base: Component, rel-tree-spec: String, class: Class[, ...]):
Object

component.create(rel-tree-spec: String, class: Class[, ...]): Object

Create one or more components. Their structure is specified by the absolute (abs-tree-spec) or
relative (rel-tree-spec) tree specification which is string containing a set ({...}) of slash-
separated (.../...) paths of component names. For instance, the specification foo/{bar/
baz,quux} is the tree consisting of the two maximum length paths: foo/bar/baz and foo/quux.
For each name from left-to-right in the tree specification you have to give either a to be
instanciated class constructor (Function) or an already instanciated object (Object).

cs.create("/{sv,ui/{one,two}}", my.sv, {}, my.ui.one, my.ui.two);
cs.create(this, "/model/view", model, view);
cs(this).create("/model/view", model, view);

ComponentJS.destroy(abs-path: String): Void component.destroy(): Void
component.destroy(): Void

Destroy the component uniquely identified by abs-path or the component on which this method
is called upon.

cs.destroy("/foo/bar")
cs.destroy(comp, "foo/bar")
cs("/foo/bar").destroy()

Component Information
Components carry a few distinct information. They can be accessed via the following getter/setter-style
methods.

component.id(): String

component.id(id: String): String

Get current unique id of component or set new id on component and return the old id. Setting the
id of a component should be not done by the application as it is done by ComponentJS internally
on component creation time.

cs(this).id()

component.name(): String

component.name(name: String): String

Get current non-unique name of component or set new name on component and return the old
name. Setting the name of a component should be not done by the application as it is done by
ComponentJS internally on component creation time.

cs("/foo/bar").name() === "bar"

component.obj(): Object

Retrieve the shadow Object object to the corresponding Component.

cs(this).obj() === this

component.cfg(): Array(String)

component.cfg(key: String): Object

component.cfg(key: String, value: Object): Object component.cfg(key: String,
undefined): Object

Components can have key/value pairs attached for application configuration purposes. Four use
cases exists for this method: 1. get array of all key strings, 2. get current configuration property
identified by key, 3. set configuration property identified by key to new value value and return
the old value, and 4. delete the configuration property identified by key.

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 4 / 11

var value = cs("/foo/bar").cfg("quux")
cs("/foo/bar").cfg("quux", value)
cs("/foo/bar").cfg("quux", undefined)

Component Lookup
Before performing certain operations on a component, it first have to be looked up in the component tree.
As this is one of the most prominent functionalities of ComponentJS, it is directly exposed through the
global API symbol.

ComponentJS(abs-path: string): Component

ComponentJS(component: Component, rel-path: String): Component

ComponentJS(object: Object, rel-path: String): Component

ComponentJS(component: Component): Component

ComponentJS(object: Object): Component

Components can be looked up by absolute/relative paths from root/base components. A path is a
string of slash-separated component names with four special names allowed: "." for current
component name, ".." for parent component name, "*" for any component name and an empty
name (//) for any component trees between current and following components. In any case, the
result has to uniquely identify a single component. The following usages exist: 1. Lookup
Component by absolute path path (this is usually never done explicitly, but occurs implicity if the
input parameter is already a Component). 2. Lookup Component by path path, relative to
Component component. 3. Lookup Component by path path, relative to the Component
corresponding to Object object. 4. Lookup Component object via shadow object object. 5. Lookup
Component object via the component itself (no-operation).

cs("/foo/bar") /* absolute */
cs(comp, "model/view") /* relative to component */
cs(this, "model/view") /* relative to component via shadow object */
cs("//bar") /* full-tree lookup */
cs(comp, "//bar") /* sub-tree lookup */
cs(this, "*/view") /* wildcard lookup */
cs(this, "..//view") /* parent sub-tree lookup */

component.exists(): Boolean

Check whether a (usually previously looked up) component (either a real existing on or the
special pre-existing singleton component with name "<none>") really exists in the component
tree.

if (cs("//quux").exists()) ...
if (cs("//quux").name() !== "<none>") ...

Component Tree
Components are managed within a component tree. The following functions allow you to traverse this
tree.

component.path(): Array(Component)

component.path(separator: String): String

Either retrieve as an array all Components from the current component up to and including the
root component, or get the slash-separated component name path String from the root
component down to and including the current component.

cs("/foo/bar").path("/") → "/foo/bar"
cs("/foo/bar").path() → [cs("/foo/bar"), cs("/foo"), cs("/")]

component.parent(): Component

Return the parent component of component, or null if component is the root or none
component.

cs(this).parent() === cs(this, "..")

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 5 / 11

component.children(): Array(Component)

Return the array of child components of component.

cs(this).children()

component.walk_up(callback: Function, ctx: Object): Object

Walk the component tree upwards from the current component (inclusive) to the root component
(inclusive). The callback Function has to be of signature callback(depth: Number, component:
Component, ctx: Object): Object and for each component it is called like "ctx =
callback(depth++, comp, ctx)" where initially ctx=ctx, comp=component and depth=0 was set.

var path = cs(this).walk_up("", function (depth, comp, ctx) {
return "/" + comp.name() + ctx;

}, "")

component.walk_down(callback: Function, ctx: Object): Object

Walk the component tree downwards from the current component (inclusive) to all the transitive
child components (inclusive). The callback Function has to be of signature callback(ctx: Object,
component: Component, depth: Number, depth_first: Boolean): Object and for each component it
is called twice(!): once like "ctx = callback(depth, comp, ctx, false)" when entering the
component (before all children will be visited) and once like "ctx = callback(depth, comp,
ctx, true)" when leaving a component (after all children were visited). Initially ctx=ctx,
comp=component and depth=0 is set.

var output = cs(this).walk_down(
function (depth, comp, output, depth_first) {
if (!depth_first) {
for (var n = 0; n < depth; n++)
output += " ";

output += "\"" + comp.name() + "\"\n";
}
return output;

},
"")

States
Components, during their life-cycle, are in various particular states. Components can be triggered to
change their state. During those state transitions, enter and leave methods are called accordingly.

ComponentJS.transition(null)

ComponentJS.transition(target: String, enter: String, leave: String, color: String,
[source: String])

ComponentJS.transition({ target: String, enter: String, leave: String, color:
String, [source: String] })

Clear all (if passed just a single null parameter) or add one state transition to target state
target, either at the top of the transition stack or in the middle, above the source state source.
When entering the target state, the optional component shadow object method enter is called.
When leaving the target state, the optional component shadow object method leave is called.
The color is a "#RRGGBB" string used for visualizing the state in the debugger view. The default
state transition definitions are given as an example.

cs.transition(null);
cs.transition("created", "create", "destroy", "#cc3333");
cs.transition("prepared", "prepare", "cleanup", "#eabc43");
cs.transition("materialized", "render", "release", "#6699cc");
cs.transition("visible", "show", "hide", "#669933");

component.state(): String

component.state(state: String[, callback: Function]): String

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 6 / 11

component.state({ state: String, [callback: Function = undefined,] [sync: Boolean =
false,] }): String

Determine the current state or request a transition to a new state of component. By default a
state transition is performed asynchronously, but you can request a synchronous transition with
sync. For asynchronous transitions you can await the transition finish with callback. The old
state is returned on state transitions. On each state transition, for each transitively involved
component and each target or intermediate state, a non-capturing/non-bubbling event is
internally published named "ComponentJS:state:state:enter" or
"ComponentJS:state:state:leave". You can subscribe to those in order to react to state
transitions from outside the component, too.

cs("/ui").state("visible")

component.state_compare({ state: String }): Number

component.state_compare(state: String): Number

Compare the state of component with state. If component is in a lower state than state, a
negative number is returned. If component is in same state than state, a zero is returned. If
component is in a higher state than state, a positive number is returned.

if (cs(this).state_compare("visible") < 0) ...

component.state_auto_increase(increase: Boolean): Boolean

component.state_auto_increase(): Boolean

Get or set component component to automatically transition to same higher/increased state than
its parent component.

cs(this).state_auto_increase(true)

component.state_auto_decrease(decrease: Boolean): Boolean

component.state_auto_decrease(): Boolean

Get or set component component to automatically transition to same lower/decreased state than
its child components. Notice that this means that a child can drag down the parent component
and this way implicitly also all of its other sibling child components. Hence, use with care!

cs(this).state_auto_decrease(true)

component.guard({ method: String, level: Number }): Void

component.guard(method: String, level: Number): Void

Guard component component from calling the state enter/leave method method and this way
prevent it from entering/leaving the corresponding state. The level can be increased and
decreased. Initially it should be set to a positive number to activate the guard. Then it should be
set to a negative number to (potentially) deactivate the guard. A usage with an initial call of +1
and then followed by a -1 is a boolean guard. An initial call of +N and then followed by N times a
-1 call is a semaphore-like guard which ensures that only after the Nth -1 call the guard is finally
deactivated again. This is useful if activate the guard in order to await N asynchronous
operations. Then the guard should be deactivated once the last asynchronous operation is
finished (independent which one of the N operations this is).

var self = this;
cs(self).guard("render", +2)
$.get(url1, function (data) {
self.data1 = data;
cs(self).guard("render", -1)

});
$.get(url2, function (data) {
self.data2 = data;
cs(self).guard("render", -1)

});

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 7 / 11

Spools
In ComponentJS there are at least 4 resource allocating operations which have corresponding deallocation
operations: Model observe/unobserve, Socket plug/unplug, Event subscribe/unsubscribe, Service
register/unregister and Hook latch/unlatch. For correct run-time operation it is required that each
allocation operation, performed in a state enter method, is properly reversed with the corresponding
deallocation operation in the state leave method. As this is extremely cumbersome (especially because
you have to store the identifiers returned by the allocation operations as you need them for the
deallocation operation), ComponentJS provides a convenient spool mechanism which all of the above
allocation operations support and which also can be used by the application itself.

component.spool({ name: String, [ctx: Object = this,] func: Function [args:
Array(Object) = new Array()] }): Void

component.spool(name: String, func: Function): Void

Remember action "ctx.func(args)" on spool named name.

cs(this).spool({
name: "foo",
ctx: this,
func: function (num, str) { ... },
args: [42, "foo"]

});

component.spooled({ name: String }): Boolean

component.spooled(name: String): Boolean

Check whether any actions are spooled under spool named name. Usually done before calling
unspool() as it would throw an exception if there are no spooled actions at all.

if (cs(this).spooled("foo"))
cs(this).unspool("foo")

component.unspool({ name: String }): Void

component.unspool(name: String): Void

Perform all actions previously spooled on spool name in reverse spooling order (those spooled last
are executed first).

release: function () {
cs(this).unspool("materialized")

}

Properties
Every component can have an arbitrary number of key/value based properties attached to it. The keys
have to be of type String, the values can be of any type. A property is set on a target component but is
resolved on both the target component and all parent components (up to and including the root
component). This way properties feel like inherited and overrideable values which can be used for both
storing component-local information and to communicate information to foreign components.

component.property({ name: String, [value: Object = "undefined",] [bubbling:
Boolean = true,] [targeting: Boolean = true,] [returnowner: Boolean = false] }):
Object

component.property(name: String, value: Object): Object

component.property(name: String): Object

Get or set property with name name and value value on component component. If bubbling is
set to false a property get operation does not resolve on any parent components ("it does not
bubble up to the root"). If targeting is set to false a property get operation does not resolve on
the target component component (resolving starts on parent component). If returnowner is set
to true instead of the property value, the owning component is returned. Finally, properties can
be scoped with a child component name: on each attempt to resolve the property, first the
scoped variant is tried. This means, if a property was set with name "bar@prop" on component
/foo, if you resolve the property with cs("/foo/bar/baz", "prop") you the value, but if you

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 8 / 11

resolve the property with cs("/foo/quux", "prop") you do not get the value. This allows you to
set the same property with different values for different child components.

cs(this).property("foo")

Sockets
Sockets are a special form of component Properties with callback functions as the values. They are
intended to link Views of child/descendant components into the View of a parent/ancestor component. In
contrast to regular Properties, Sockets are never resolved directly on the target component. Instead they
always start to resolve on the parent component because the sockets on the target component are
intended for its child/ancestor components and not for the target component itself.

component.socket({ [name: String = "default",] [scope: Object = null,] ctx: Object,
plug: Function, unplug: Function })

component.socket(ctx: Object, plug: Function, unplug: Function)

Create a socket on component, named name and optionally scoped for the child component
named scope, where plug() and unplug() calls on child/ancestor components execute the
supplied plug/unplug functions with ctx supplied as this.

var ui = $(...);
cs(this).socket({
ctx: ui,
plug: function (el) { $(this).append(el); },
unplug: function (el) { $(el).remove(); }

})

component.link({ [name: String = "default",] [scope: Object = null,] target: Object,
socket: String })

component.link(target: Object, socket: String)

Create a socket on component, named name and optionally scoped for the child component
named scope, and pass-through the plug/unplug() calls to the target component target and its
socket named socket. Usually used by Controller components to link their default socket (for the
View below itself) to a particular socket of a parent component (because a View should be
reusable and hence is not allowed to know the particular socket intended for it).

cs(this).link({ name: "default", target: this, socket: "menu1" })

component.plug({ [name: String = "default",] object: Object, [spool: String] }):
String

component.plug(object: Object): String

Plugs object into the socket named name provided by any parent/ancestor component of
component. Optionally spool the corresponding unplug() operation on spool spool attached to
component. Returns an identifier for use with the corresponding unplug() operation.

cs(this).plug({ object: ui, spool: "materialized" })

component.unplug({ id: String }): Void

component.unplug(id: String): Void

Unplugs the object previously plugged under id. This is usually performed indirectly through the
Spool mechanism.

cs(this).unplug(id)

Models
When using Model/View/Controller roles for components, the Model component needs a so-called
Presentation Model: an abstraction of presentation onto which both View and Controller components
attach via Observer pattern. The Controller component for provisioning business information into the
Model and triggering business services upon Model changes. The View component for displaying the
Model information and storing events into it.

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 9 / 11

component.model(spec: Object): Object

Define a model through the specification in spec. Each key is the name of a model element and
the value has to be an Object with the following possible fields: value (Object) for the default
value, valid (String/RegExp) for validating the values, autoreset (Boolean) for indicating that
on each value write, the value should be automatically reset to the initial value, and store
(Boolean) for indicating that the value should be persistently stored in the browser's
localStorage. Multiple calls to the model method on the same component incrementally add
model elements.

cs(this).model({
"param:realms": { value: [], valid: "array(string)" },
"data:realm": { value: "", valid: "string", store: true },
"data:username": { value: "", valid: "string", store: true },
"data:password": { value: "", valid: "string" },
"state:username": { value: "empty", valid: "string" },
"state:username-hint": { value: "", valid: "string" },
"state:password": { value: "empty", valid: "string" },
"state:password-hint": { value: "", valid: "string" },
"state:hashcode-col": { value: 0, valid: "number" },
"state:hashcode-txt": { value: "", valid: "string" },
"state:button-enabled": { value: false, valid: "boolean" },
"event:button-clicked": { value: false, valid: "boolean", autoreset: true }

})

component.value({ name: String, [value: Object,] [force: Boolean] })

component.value(name: String, [value: Object,] [force: Boolean])

Get the value of component's model element named name or set the value of component's model
element named name to value. As each value change causes observers to be triggered, by
default changing a value to the same value does not trigger anything. But if force is true even
setting a model element to its current value triggers observers.

var val = cs(this).value("foo")
cs(this).value("foo", "bar")

component.observe({ name: String, func: Function, [touch: Boolean = false,]
[operation: String = "set",] [spool: String = null] }): String

component.observe(name: String, func: Function): String

Observe the value of component's model element named name for operation operations (by
default set/change operations). For "get" operations, the callback function func has to be of
signature func(ev: Event, value: Object): Void. For "set" operations, the callback function func
has to be of signature func(ev: Event, value-new: Object, value-old: Object): Void. Both types of
callbacks can override the value by using ev.result(value). The observe method returns an id
which uniquely identifies the observation. Instead of having to manually release the observation
later via unobserve() you can use the spool mechanism and spool the corresponding
unobserve() operation via spool.

id = cs(this).observe("state:username", function (ev, username) {
...

})

component.unobserve({ id: String }): Void

component.unobserve(id: String): Void

Release the observation identified by id, previously acquired by a call to observe(). This is
usually done implicitly through the spooling mechanism.

cs(this).unobserve(id)

Events
The Event mechanism is a central one in ComponentJS. Both Models, Services and Hooks are all internally
based on the Events mechanism. An Event is an object published towards a target component. It is

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 10 / 11

delivered in 4 phases: in phase 1 (the "capturing" phase) the Event is delivered to all components on the
path from the root component (inclusive) towards the target component (exclusive); in phase 2 (the
"targeting" phase) the Event is delivered to the target component; in phase 3 (the "spreading" phase) the
Event is delivered to all descendant components of the target component in a depth-first traversal order
and in phase 4 (the "bubbling" phase) the Event is delivered (again) to all components on the path from
the target component (exclusive) to the root component (inclusive).

Event objects are implicitly created by the publish() operation and they provide various getter/setter
methods: target (Component): target component the event is send to; propagation (Boolean): whether
event propagation should continue; processing (Boolean): whether final default event processing should
be performed; dispatched (Boolean): whether event was dispatched at least once to a subscriber;
decline (Boolean): whether event was declined by subscriber; state (Boolean): state of dispatching:
capturing, targeting, spreading or bubbling; result (Object): optional result value event subscribers
can provide; async (Boolean): whether event is dispatched asynchronously.

component.subscribe({ name: String, [spec: Object = {}], [ctx: Object = component,]
func: Function, [args: Object[] = []], [capturing: Boolean = false], [spreading:
Boolean = false], [bubbling: Boolean = true], [noevent: Boolean = false],
[exclusive: Boolean = false], [origin: Boolean = false], [spool: String = null] })

component.subscribe(name: String, func: Function, [arg: Object, ...])

Subscribe to event name on component component and execute callback func as func(ev:
Event, args: Object[]) once the event is dispatched to component after it was published.
Option ctx allows FIXME . By default an event is dispatched in the targeting and bubbling
phases. Setting option capture to true indicates that the event should be dispatched in the
capturing phase.

FIXME

Services
FIXME

FIXME

FIXME

FIXME

Hooks
FIXME

FIXME

FIXME

FIXME

ComponentJS Application Programming Interface (API) 0.9.0

ComponentJS Application Programming Interface (API) 11 / 11

	API Management
	symbol
	version

	Debugging
	debug
	debug_instrumented
	debug_window

	Code Structuring
	ns
	params
	attribute
	clazz
	trait

	Component Creation
	create
	destroy

	Component Information
	id
	name
	obj
	cfg

	Component Lookup
	ComponentJS
	exists

	Component Tree
	path
	parent
	children
	walk_up
	walk_down

	States
	transition
	state
	state_compare
	state_auto_increase
	state_auto_decrease
	guard

	Spools
	spool
	spooled
	unspool

	Properties
	property

	Sockets
	socket
	link
	plug
	unplug

	Models
	model
	value
	observe
	unobserve

	Events
	subscribe

	Services
	Hooks

