
API Management
Change the API symbol in the global variable namespace under which ComponentJS is exposed. By default
ComponentJS is exposed under the symbol name ComponentJS. It is a common convention to change the
symbol to cs (for "component system/service") to have a convenient short-hand.

ComponentJS.symbol([name: String]): ComponentJS

Change symbol of ComponentJS API to global variable name and return it. If name is not given,
ComponentJS does not occupy any global namespace slot at all — then it is required to store the
return value and use ComponentJS directly through it.

ComponentJS.symbol("cs") /* standard */
var cs = ComponentJS.symbol() /* alternative */

ComponentJS.version = { major: Number, minor: Number, micro: Number, date:
Number }

Access the ComponentJS implementation version "major.minor.micro" and the corresponding
release date (in format YYYYMMDD).

if (ComponentJS.version.date < 20120101)
throw new Error("need at least ComponentJS as of 20120101")

Library Management
ComponentJS can be extended through plugins, so it can initialize some of its internals only once all
plugins were loaded and executed.

ComponentJS.bootstrap(): Void

Bootstrap the ComponentJS library by initializing its internals. This has to be called at least
before any calls to create(), but can be called after any calls to symbol(), debug() or ns().

cs.bootstrap()

ComponentJS.shutdown(): Void

Shutdown the ComponentJS library by destroying its internals. This implicitly destroy the existing
component tree, too.

cs.shutdown()

ComponentJS.plugin(): String[]

ComponentJS.plugin(name: String): Boolean

ComponentJS.plugin(name: String, callback: Function): Void

Return the names of all registered plugins, check for the registration of a particular plugin with
name name or register a new plugin under name name with callback function callback. The
callback function callback should have the signature "callback(_cs: ComponentJS_API_internal,
$cs: ComponentJS_API_external, GLOBAL: Environment): Void" where _cs is the internal
ComponentJS API (you have to check the source code of ComponentJS to know what you can do

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 1 / 22

with it), $cs is the external ComponentJS API (the one described in this document) and GLOBAL is
the global environment object (usually window in a browser, global in Node.js, etc).

/* add a "foo()" method to all components */
ComponentJS.plugin("foo", function (_cs, $cs, GLOBAL) {

var trait = $cs.trait({
protos: {

foo: function () {
...

}
}

});
_cs.latch("ComponentJS:bootstrap:comp:mixin", function (mixins) {

mixins.push(trait);
});

});

Debugging
ComponentJS has special support for debugging its run-time processing, especially for visualizing the
current component tree in real-time.

ComponentJS.debug(): Number

ComponentJS.debug(level: Number): Void

ComponentJS.debug(level: Number, message: String): Void

Get current debug level, or configure the debugging through maximum debug-level level (0
disables all debug messages, 9 enables all debug messages) or log a particular message under
debug-level level.

cs.debug(0)
if (cs.plugin("debugger")) {

if (cs.debug_instrumented()) {
cs.debug(9)
cs.debug_window({ ... })

}
}

ComponentJS.debug_instrumented(): Boolean

Notice: requires ComponentJS plugin debugger to be loaded!

Determine whether the current browser is "instrumented" for debugging, i.e., whether the
browser's built-in debugger is activated (in detached mode only). Currently ComponentJS is able
to determine Firefox's Firebug and Chrome's Inspector only.

if (cs.debug_instrumented()) ...

ComponentJS.debug_window({ enable: Boolean, autoclose: Boolean, name: String,
width: Number = 800, height: Number = 600, natural: Boolean = false })

ComponentJS.debug_window(enable: Boolean, autoclose: Boolean, name: String)

Notice: requires ComponentJS plugin debugger to be loaded!

On enable true/false open/close the extra browser window containing the ComponentJS
debugger view for the ComponentJS application identified by name. If autoclose is true,
optionally automatically close the debugger window with application window (which usually is
inconvenient during debugging because on application reloads the ComponentJS debugger
window is recreated with default width/height at default position instead of reused). Parameters
width and height can be used to change the initial window size. Parameter natural controls
whether the component tree is drawn with the root component at the bottom (true) or at the top
(false).

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 2 / 22

cs.debug_window({
enable: true,
autoclose: false,
name "My App"
width: 800,
height: 800,
natural: true

})

Code Structuring
ComponentJS internally uses a few code structuring utility functions for implementing class method
parameters and class attributes. Those utility functions are also exposed for consumption by application
developers, but they are NOT(!) required for using ComponentJS. Especially, it is NOT(!) required that
component backing objects are defined by cs.clazz!

ComponentJS.ns(path: String[, leaf: Object = {}]): Object

Classes and traits should be structured through namespaces. A namespace is a JavaScript (hash)
object, potentially itself part of a parent namespace object. The top-most implicit namespace
object is window. A namespace has a dot-separated fully-qualified symbol path like
foo.bar.quux. This method allows to create the fully-qualified path of nested objects through
the dot-separated path of object names, optionally assign the right-most/leaf object to leave and
finally return the right-most/leaf Object.

cs.ns("my.app"); my.app.ui = cs.clazz({ ... }) /* standard */
cs.ns("my.app").ui = cs.clazz({ ... }) /* alternative */
cs.ns("my.app.ui", cs.clazz({ ... }) /* alternative */

ComponentJS.select(object: Object, path: String[, value: Object]): Object

Dereference into (and this way subset) object according to the path specification and either
return the dereferenced value or set a new value. Object has to be a hash or array object. The
path argument has to follow the following grammar (which is a direct JavaScript dereferencing
syntax):

path ::=segment segment*
segment ::=bybareword | bykey
bybareword::="."? identifier
bykey ::="[" key "]"
identifier ::=/[_a-zA-Z$][_a-zA-Z$0-9]*/
key ::=number | squote | dquote
number ::=/[0-9]+/
dquote ::=/"(?:\\"|.)*?"/
squote ::=/'(?:\\'|.)*?'/

Setting the value to undefined effectively removes the dereferenced value. If the dereferenced
parent object is a hash, this means the value is delete'ed from it. If the dereferenced parent
object is an array, this means the value is splice'ed out of it.

cs.select({ foo: { bar: { baz: [42, 7, "Quux"] } } }, "foo['bar'].baz[2]") → "Quux"

ComponentJS.validate(object: Object, spec: String): Boolean

Validate an arbitrary nested JavaScript object object against the specification spec. The
specification spec has to be either a RegExp object for String validation, a validation function of
signature "spec(Object): Boolean" or a string following the following grammar (which is a mixture
of JSON-like structure and RegExp-like quantifiers):

spec ::=not | alt | hash | array | any | primary | class | special
not ::="!" spec
alt ::="(" spec ("|" spec)* ")"
hash ::="{" (key arity? ":" spec ("," key arity? ":" spec)*)? "}"
array ::="[" (spec arity? ("," spec arity?)*)? "]"
arity ::="?" | "*" | "+" | "{" number "," (number | "oo") "}"
number::=/^[0-9]+$/
key ::=/^[_a-zA-Z$][_a-zA-Z$0-9]*$/ | "@"

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 3 / 22

any ::="any"
primary::=/^(?:null|undefined|boolean|number|string|function|object)$/
class ::=/^[A-Z][_a-zA-Z$0-9]*$/
special ::=/^(?:clazz|trait|component)$/

The special key "@" can be used to match an arbitrary hash element key.

cs.validate({ foo: "Foo", bar: "Bar", baz: [42, 7, "Quux"] },
"{ foo: string, bar: any, baz: [number+, string*], quux?: any }")

ComponentJS.params(name: String, args: Object[], spec: Object): Object

Handle positional and named function parameters by processing a function's arguments array.
Parameter name is the name of the function for use in exceptions in case of invalid parameters.
Parameter args usually is the JavaScript arguments pseudo-array of a function. Parameter spec is
the parameter specification: each key is the name of a parameter and the value has to be an
Object with the following possible fields: pos for the optional position in case of positional usage,
def for the default value (of not required and hence optional parameters), req to indicate whether
the parameter is required and valid for type validation (either a string accepted by the
validate() method, or a valid regular expression C object for validating a String against it or an
arbitrary validation callback function of signature "valid(Object): Boolean".

function config () {
var params = $cs.params("config", arguments, {

scope: { pos: 0, req: true, valid: "boolean" },
key: { pos: 1, req: true, valid: /^[a-z][a-z0-9_]*$/ },
value: { pos: 2, def: undefined, valid: "object" },
force: { def: false, valid: "boolean" }

});
var result = db_get(params.scope, params.key);
if (typeof params.value !== "undefined")

db_set(params.scope, params.key, params.value, params.force);
return result;

}
var value = config("foo", "bar");
config("foo", "bar", "quux");
config({ scope: "foo", key: "bar", value: "quux", force: true });

ComponentJS.attribute({ name: String, def: Object, valid: Object }): Function

ComponentJS.attribute(name: String, def: Object, valid: Object): Function

Create a cloneable attribute capturing getter/setter function with name name (for exception
handling reasons only), the default value def and the value validation valid.

var id = ComponentJS.attribute("id", "foo", /^[a-z][a-zA-Z0-9_]*/);
id() === "foo"
id("bar") → "foo"
id() → "bar"

ComponentJS.clazz({ [name: String,] [extend: Clazz,] [mixin: Array(Trait),] [cons:
Function,] [dynamics: Object,] [protos: Object,] [statics: Object] }): Clazz

Define a JavaScript Class, optionally stored under the absolute dot-separated object path name,
optionally extending the base/super/parent Class extend and optionally mixing in the
functionality of one or more Traits via mixin. The class can have a constructor function cons
which is called once the Class is instantiated and which can further initialize the dynamic fields of
the class. On each instantiation, all fields which are specified with dynamics are cloned and
instantiated and all methods in protos are copied into the Class prototypes object. The statics
content is copied into the Class itself only. In case of extend and/or mixin, both the cons and
methods of protos can call this.base(...) for the base/super/parent method.

var foo = cs.clazz({
cons: function (bar) {

this._bar = bar;
},
protos: {

bar: function (value_new) {
var value_old = this._bar;
if (typeof value_new !== "undefined")

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 4 / 22

this._bar = value_new;
return value_old;

}
[...]

}
})

It is important to notice how calls to any method resolve and how calls to this.base() in any
method of a class resolves. When on class Foo and its instanciated object foo a method
foo.bar() is called, the following happens:

◦ First, a direct property named bar on object foo is tried. This can exist on foo through
(in priority order) a bar in either the dynamics definition of a mixin of Foo, or in the
statics definition of a mixin of Foo, or in the dynamics definition of Foo, or in the
statics definition of Foo.

◦ Second, an indirect prototype-based property named bar on object foo is tried. This can
exist on foo through (in priority order) a bar in either the protos definition of Foo or in
the protos definition of any extend of Foo.

When on class Foo and its instanciated object foo in any method foo.bar() the this.base() is
called, the following happens:

◦ First, a call to the super/base/parent functions in the mixin trait chain is attempted. The
mixins are traversed in the reverse order of the trait specification in the mixin array,
i.e., the last trait's mixins are tried first.

◦ Second, a call to the super/base/parent functions in the extend inheritance class chain
is attempted. First, the directly extend class is attempted, then the extend class of this
class, etc.

NOTICE: As ComponentJS does not care at all how backing objects of components are defined,
you can alternatively use an arbitrary solution for Class-based OO in JavaScript (e.g. TypeScript,
JSClass, ExtendJS, DejaVu, Classy, jTypes, etc) or fallback to the also just fine regular Prototype-
based OO in JavaScript:

var foo = function (bar) {
this._bar = bar;

}
foo.prototype.bar = function (value_new) {

var value_old = this._bar;
if (typeof value_new !=== "undefined")

this._bar = value_new;
return value_old;

}
[...]

ComponentJS.trait({ [name: String,] [mixin: Array(Trait),] [cons: Function,] [setup:
Function,] [dynamics: Object,] [protos: Object,] [statics: Object] }): Trait

Define a JavaScript Trait (a Class which can be mixed in), optionally stored under the absolute
dot-separated object path name and optionally mixing in the functionality of one or more other
Traits via mixin. The trait can have a constructor function cons which is called once the Class the
Trait is mixed in is instantiated and which can further initialize the dynamic fields of the Class. On
each instantiation, all fields which are specified with dynamics are cloned and instantiated and
all methods in protos are copied into the Class prototypes object. The statics content is
copied into the Class itself only. The optional setup function is called directly at the end of Class
definition (not instantiation) and can further refine the defined Class.

var foo = cs.trait({
protos: {

bar: function () {
[...]

}
}

})

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 5 / 22

Component Creation
Components are managed in hierarchical fashion within a component tree. The component tree can be
traversed and its components can be created, looked up, state transitioned, communicated on and be
destroyed.

ComponentJS.create(abs-tree-spec: String, class: Class[, ...]): Object

ComponentJS.create(base: Component, rel-tree-spec: String, class: Class[, ...]):
Object

component.create(rel-tree-spec: String, class: Class[, ...]): Object

Create one or more components. Their structure is specified by the absolute (abs-tree-spec) or
relative (rel-tree-spec) tree specification which is string containing a set ({...}) of slash-
separated (.../...) paths of component names. In other words, the specification has to follow
the following grammar:

abs-tree-spec::="/" rel-tree-spec
rel-tree-spec ::=path | "{" path ("," path)* "}"
path ::=rel-tree-spec | name ("/" name)*
name ::=/^[^\/]+$/

For instance, the specification foo/{bar/baz,quux} is the tree consisting of the two maximum
length paths: foo/bar/baz and foo/quux. For each name from left-to-right in the tree
specification you have to give either a to be instantiated class constructor (Function) or an
already instantiated object (Object).

The create() method returns the last created component, i.e., the right-most component in the
tree specification.

cs.create("/{sv,ui/{one,two}}", my.sv, {}, my.ui.one, my.ui.two);
cs.create(this, "model/view", model, view);
cs(this).create("model/view", model, view);

ComponentJS.destroy(abs-path: String): Void

component.destroy(): Void

component.destroy(): Void

Destroy the component uniquely identified by abs-path or the component on which this method
is called upon.

cs.destroy("/foo/bar")
cs.destroy(comp, "foo/bar")
cs("/foo/bar").destroy()

Component Information
Components carry a few distinct information. They can be accessed via the following getter/setter-style
methods.

component.id(): String

component.id(id: String): String

Get current unique id of component or set new id on component and return the old id. Setting the
id of a component should be not done by the application as it is done by ComponentJS internally
on component creation time.

cs(this).id() → "0000000000000000000000000000001"

component.name(): String

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 6 / 22

component.name(name: String): String

Get current non-unique name of component or set new name on component and return the old
name. Setting the name of a component should be not done by the application as it is done by
ComponentJS internally on component creation time.

cs("/foo/bar").name() === "bar"

component.obj(): Object

Retrieve the backing Object object to the corresponding Component.

cs(this).obj() === this

component.cfg(): Array(String)

component.cfg(key: String): Object

component.cfg(key: String, value: Object): Object

component.cfg(key: String, undefined): Object

Components can have key/value pairs attached for application configuration purposes. Four use
cases exists for this method: 1. get array of all key strings, 2. get current configuration property
identified by key, 3. set configuration property identified by key to new value value and return
the old value, and 4. delete the configuration property identified by key.

var value = cs("/foo/bar").cfg("quux")
cs("/foo/bar").cfg("quux", value)
cs("/foo/bar").cfg("quux", undefined)

Component Lookup
Before performing certain operations on a component, it first have to be looked up in the component tree.
As this is one of the most prominent functionalities of ComponentJS, it is directly exposed through the
global API symbol.

ComponentJS(abs-path: string): Component

ComponentJS(component: Component, rel-path: String): Component

ComponentJS(object: Object, rel-path: String): Component

ComponentJS(component: Component): Component

ComponentJS(object: Object): Component

Components can be looked up by absolute/relative paths from root/base components. A path is a
string of slash-separated component names with four special names allowed: "." for current
component name, ".." for parent component name, "*" for any component name and an empty
name (C) for any component trees between current and following components. In any case, the
result has to uniquely identify a single component. The following usages exist: 1. Lookup
Component by absolute path path (this is usually never done explicitly, but occurs implicitly if
the input parameter is already a Component). 2. Lookup Component by path path, relative to
Component component. 3. Lookup Component by path path, relative to the Component
corresponding to Object object. 4. Lookup Component object via backing object object. 5. Lookup
Component object via the component itself (no-operation). The paths have to follow the following
grammar:

abs-path::="/" rel-path
rel-path ::=name ("/" name)*
name ::="" | "*" | /^[^\/]+$/

cs("/foo/bar") /* absolute */
cs(comp, "model/view") /* relative to component */
cs(this, "model/view") /* relative to component via backing object */
cs("//bar") /* full-tree lookup */

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 7 / 22

cs(comp, "//bar") /* sub-tree lookup */
cs(this, "*/view") /* wildcard lookup */
cs(this, "..//view") /* parent sub-tree lookup */

component.exists(): Boolean

Check whether a (usually previously looked up) component (either a real existing on or the
special pre-existing singleton component with name "<none>") really exists in the component
tree.

if (cs("//quux").exists()) ...
if (cs("//quux").name() !== "<none>") ...

Component Tree
Components are managed within a component tree. The following functions allow you to traverse this
tree.

component.path(): Array(Component)

component.path(separator: String): String

Either retrieve as an array all Components from the current component up to and including the
root component, or get the slash-separated component name path String from the root
component down to and including the current component.

cs("/foo/bar").path("/") → "/foo/bar"
cs("/foo/bar").path() → [cs("/foo/bar"), cs("/foo"), cs("/")]

component.parent(): Component

Return the parent component of component, or null if component is the root or none
component.

cs(this).parent() === cs(this, "..")

component.children(): Array(Component)

Return the array of child components of component.

cs(this).children()

component.attach(parent: Component): Void

Attach component as a child to the parent component. In case it is already attached to an old
parent component, it automatically calls detach() before attaching to the new parent
component. Internally used by ComponentJS on create(), but can be also used by application
when moving a sub-tree within the component tree.

/* migrate all children from our view1 onto our view2 */
var view1 = cs(this, "model/view1")
var view2 = cs(this, "model/view2")
view1.children().forEach(function (child) {

var state = child.state({ state: "created", sync: true })
child.detach()
child.attach(view2)
child.state(state)

})

component.detach(): Void

Detach component as a child from its parent component. Internally used by ComponentJS on
destroy(), but can be also used by application when moving components within the component
tree.

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 8 / 22

cs(this).detach()

component.walk_up(callback: Function, ctx: Object): Object

Walk the component tree upwards from the current component (inclusive) to the root component
(inclusive). The callback Function has to be of signature callback(depth: Number, component:
Component, ctx: Object): Object and for each component it is called like "ctx =
callback(depth++, comp, ctx)" where initially ctx=ctx, comp=component and depth=0 was set.

var path = cs(this).walk_up("", function (depth, comp, ctx) {
return "/" + comp.name() + ctx;

}, "")

component.walk_down(callback: Function, ctx: Object): Object

Walk the component tree downwards from the current component (inclusive) to all the transitive
child components (inclusive). The callback Function has to be of signature callback(ctx: Object,
component: Component, depth: Number, depth_first: Boolean): Object and for each component it
is called twice(!): once like "ctx = callback(depth, comp, ctx, false)" when entering the
component (before all children will be visited) and once like "ctx = callback(depth, comp,
ctx, true)" when leaving a component (after all children were visited). Initially ctx=ctx,
comp=component and depth=0 is set.

var output = cs(this).walk_down(
function (depth, comp, output, depth_first) {

if (!depth_first) {
for (var n = 0; n < depth; n++)

output += " ";
output += "\"" + comp.name() + "\"\n";

}
return output;

},
"")

States
Components, during their life-cycle, are in various particular states. Components can be triggered to
change their state. During those state transitions, enter and leave methods are called accordingly.

ComponentJS.transition(null)

ComponentJS.transition(target: String, enter: String, leave: String, color: String,
[source: String])

ComponentJS.transition({ target: String, enter: String, leave: String, color:
String, [source: String] })

Clear all (if passed just a single null parameter) or add one state transition to target state
target, either at the top of the transition stack or in the middle, above the source state source.
When entering the target state, the optional component backing object method enter is called.
When leaving the target state, the optional component backing object method leave is called.
The color is a "#RRGGBB" string used for visualizing the state in the debugger view. The default
state transition definitions are given as an example.

cs.transition(null);
cs.transition("created", "create", "destroy", "#cc3333");
cs.transition("configured", "setup", "teardown", "#eabc43");
cs.transition("prepared", "prepare", "cleanup", "#f2ec00");
cs.transition("materialized", "render", "release", "#6699cc");
cs.transition("visible", "show", "hide", "#669933");
cs.transition("enabled", "enable", "disable", "#336600");

component.state(): String

component.state(state: String[, func: Function]): String

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 9 / 22

component.state({ state: String, [func: Function = undefined,] [sync: Boolean =
false,] [min: Boolean = undefined,] [max: Boolean = undefined] }): String

Determine the current state or request a transition to a new state of component. By default a
state transition is performed asynchronously, but you can request a synchronous transition with
sync. For asynchronous transitions you can await the transition finish with func. The old state is
returned on state transitions. On each state transition, for each transitively involved component
and each target or intermediate state, a non-capturing/non-bubbling event is internally published
named "ComponentJS:state:state:enter" (after the higher state state was entered from the
state below it) or "ComponentJS:state:state:leave" (after the higher state state was left
towards the state below it). You can subscribe to those in order to react to state transitions from
outside the component, too. By default if the current and requested state of component is just
different, the current state is transitioned towards the requested state. Setting parameter min to
true skips the transition if the current state is already higher or equal to the requested state.
Setting parameter max to true skips the transition if the current state is already lower or equal to
the requested state.

cs("/ui").state("visible")

component.state_compare({ state: String }): Number

component.state_compare(state: String): Number

Compare the state of component with state. If component is in a lower state than state, a
negative number is returned. If component is in same state than state, a zero is returned. If
component is in a higher state than state, a positive number is returned.

if (cs(this).state_compare("visible") < 0) ...

component.state_auto_increase(increase: Boolean): Boolean

component.state_auto_increase(): Boolean

Get or set component component to automatically transition to same higher/increased state than
its parent component.

cs(this).state_auto_increase(true)

component.state_auto_decrease(decrease: Boolean): Boolean

component.state_auto_decrease(): Boolean

Get or set component component to automatically transition to same lower/decreased state than
its child components. Notice that this means that a child can drag down the parent component
and this way implicitly also all of its other sibling child components. Hence, use with care!

cs(this).state_auto_decrease(true)

component.guard({ method: String, level: Number }): Void

component.guard(method: String, level: Number): Void

Guard component component from calling the state enter/leave method method and this way
prevent it from entering/leaving the corresponding state. The level can be increased and
decreased. Initially it should be set to a positive number to activate the guard. Then it should be
set to a negative number to (potentially) deactivate the guard. A usage with an initial call of +1
and then followed by a -1 is a boolean guard. An initial call of +N and then followed by N times a
-1 call is a Semaphore-like guard which ensures that only after the Nth -1 call the guard is finally
deactivated again. This is useful if you activate the guard in order to await N asynchronous
operations. Then the guard should be deactivated once the last asynchronous operation is
finished (independent which one of the N operations this is). A guard level of 0 resets the guard,
independent what its current level is.

var self = this;
cs(self).guard("render", +2)
$.get(url1, function (data) {

self.data1 = data;
cs(self).guard("render", -1)

});

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 10 / 22

$.get(url2, function (data) {
self.data2 = data;
cs(self).guard("render", -1)

});

Spools
In ComponentJS there are at least 4 resource allocating operations which have corresponding deallocation
operations: Model observe()/unobserve(), Socket plug()/unplug(), Event subscribe()/unsubscribe(),
Service and register()/unregister(). For correct run-time operation it is required that each allocation
operation, performed in a state enter method, is properly reversed with the corresponding deallocation
operation in the state leave method. As this is extremely cumbersome (especially because you have to
store the identifiers returned by the allocation operations as you need them for the deallocation
operation), ComponentJS provides

• convenient spool mechanism which all of the above allocation operations support and which also can be
used by the
application itself.

component.spool({ name: String, ctx: Object, func: Function, [args: Array(Object) =
new Array()] }): Void

component.spool(name: String, ctx: Object, func: Function, [args: Object, ...]): Void

Remember action "func.apply(ctx, args)" on spool named name. The name parameter can be
either just a plain spool-name "name" or a combination of (relative) component-path and spool-
name "path:name". This allows one to spool on a component different from component (usually a
relative path back to the component of the caller of the spool() operation).

cs(this).spool({
name: "foo",
ctx: this,
func: function (num, str) { ... },
args: [42, "foo"]

});

component.spooled({ name: String }): Number

component.spooled(name: String): Number

Return the number of actions which are spooled under spool named name. Usually done before
calling unspool() as it would throw an exception if there are no spooled actions at all.

if (cs(this).spooled("foo"))
cs(this).unspool("foo")

component.unspool({ name: String }): Void

component.unspool(name: String): Void

Perform all actions previously spooled on spool name in reverse spooling order (those spooled last
are executed first).

release: function () {
cs(this).unspool("materialized")

}

Markers
An object can be "marked" with a set of names. ComponentJS internally does not use those markers at all,
but the ComponentJS Debugger plugin at least uses markers named "service", "model", "view" and
"controller" on

• components' backing object to render those components in different colors.

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 11 / 22

ComponentJS.mark(obj: Object, name: String): Void

component.mark(name: String): Void

Mark object obj with marker named name. An arbitrary number of markers can be added to an
object. An an alternative and for convenience reasons, but only if the component classes are
defined through ComponentJS' optional Class/Trait system, the traits
cs.marker.{service,model,view,controller} can be mixed into.

app.ui.panel.view = cs.clazz({
create: function () {

cs(this).mark("view");
}
...

});

app.ui.panel.view = cs.clazz({
mixin: [cs.marker.view]
...

});

ComponentJS.marked(obj: Object, name: String): Boolean

component.marked(name: String): Boolean

Checks whether object obj is marked with marker named name. This is usually interesting for
ComponentJS plugin developers only.

if (cs("/").marked("controller")) {
...

}

Properties
Every component can have an arbitrary number of key/value based properties attached to it. The keys
have to be of type String, the values can be of any type. A property is set on a target component but is
resolved on both the target component and all parent components (up to and including the root
component). This way properties feel like inherited and overrideable values which can be used for both
storing component-local information and to communicate information to foreign components.

component.property({ name: String, [value: Object = undefined,] [def: Object =
undefined,] [scope: String = undefined,] [bubbling: Boolean = true,] [targeting:
Boolean = true,] [returnowner: Boolean = false] }): Object

component.property(name: String, value: Object): Object

component.property(name: String): Object

Get or set property with name name and value value on component component. If bubbling is
set to false a property get operation does not resolve on any parent components ("it does not
bubble up to the root"). If targeting is set to false a property get operation does not resolve on
the target component component (resolving starts on parent component). If returnowner is set
to true instead of the property value, the owning component is returned. Finally, properties can
be scoped with a child component name or even a descendant component name path: on each
attempt to resolve the property, first the scoped variants are tried. This means, if a property was
set with name "quux@bar" (or with name "quux" and an explicitly scope set to "bar") on
component /foo, if you resolve the property with cs("/foo/bar", "quux") you get the value,
but if you resolve the property with cs("/foo/baz", "quux") you do not get the value. This
allows you to set the same property with different values for different child components.
Additionally the scope can be a partial component path, too. If a property was set with name
"quux@bar/baz" on component /foo, if you resolve the property with cs("/foo/bar/baz",
"quux") you get the value, but if you resolve the property with cs("/foo/bar/baz2", "quux")
you do not get the value. This allows you for instance to skip so-called intermediate namespace-
only components. Setting value to "null" removes the property. If no property name is found at
all, def (by default the value undefined) is returned.

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 12 / 22

cs(this).property("foo")

Sockets
Sockets are a special form of component Properties with callback functions as the values. They are
intended to link Views of child/descendant components into the View of a parent/ancestor component. In
contrast to regular Properties, Sockets are never resolved directly on the target component. Instead they
always start to resolve on the parent component because the sockets on the target component are
intended for its child/ancestor components and not for the target component itself. So, please remember
to never plug a socket directly onto the target component!

component.socket({ [name: String = "default",] [scope: Object = null,] ctx: Object,
plug: Function, unplug: Function [, spool: String] }): Number

component.socket(ctx: Object, plug: Function, unplug: Function): Number

Create a socket on component, named name and optionally scoped for the child component
named scope, where plug() and unplug() calls on child/ancestor components execute the
supplied plug/unplug functions with ctx supplied as this, the object parameter of
plug()/unplug() as first argument and component as the second argument. The socket() method
returns an id which uniquely identifies the socket. Instead of having to manually release the
socket later via unsocket() you can use the spool mechanism and spool the corresponding
unsocket() operation via option spool.

var ui = $(...);
cs(this).socket({

ctx: ui,
plug: function (el) { $(this).append(el); },
unplug: function (el) { $(el).remove(); }

})

component.unsocket({ id: Number }): Void

component.unsocket(id: Number): Void

Destroy the socket identified by id, previously created by a call to socket(). This is usually done
implicitly through the spooling mechanism.

cs(this).unsocket(id)

component.link({ [name: String = "default",] [scope: Object = null,] target: Object,
socket: String [, spool: String] })

component.link(target: Object, socket: String)

Create a socket on component, named name and optionally scoped for the child component
named scope, and pass-through the plug()/unplug() calls to the target component target and
its socket named socket. Usually used by Controller components to link their default socket (for
the View below itself) to a particular socket of a parent component (because a View should be
reusable and hence is not allowed to know the particular socket intended for it). The link()
method returns an id which uniquely identifies the linked socket. Instead of having to manually
release the socket later via unlink() you can use the spool mechanism and spool the
corresponding unlink() operation via option spool.

cs(this).link({ name: "default", target: this, socket: "menu1" })

component.unlink({ id: Number }): Void

component.unlink(id: Number): Void

Destroy the linked socket identified by id, previously created by a call to link(). This is usually
done implicitly through the spooling mechanism.

cs(this).unlink(id)

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 13 / 22

component.plug({ [name: String = "default",] object: Object, [spool: String,]
[targeting: Boolean] }): Number

component.plug(object: Object): Number

Plugs object into the socket named name provided by any parent/ancestor component of
component. Optionally spool the corresponding unplug() operation on spool spool attached to
component. Optionally (in case of targeting set to true) start the operation on component
instead of its parent component. Returns an identifier for use with the corresponding unplug()
operation.

cs(this).plug({ object: ui, spool: "materialized" })

component.unplug({ id: Number[, targeting: Boolean] }): Void

component.unplug(id: Number): Void

Unplugs the object previously plugged under id from the socket providing parent/ancestor
component of component. Optionally (in case of targeting set to true) start the operation on
component instead of its parent component. This is usually performed indirectly through the
Spool mechanism.

cs(this).unplug(id)

Models
When using Model/View/Controller roles for components, the Model component needs a so-called
Presentation Model: an abstraction of presentation onto which both View and Controller components
attach via Observer pattern. The Controller component for provisioning business information into the
Model and triggering business services upon Model changes. The View component for displaying the
Model information and storing events into it.

component.model(spec: Object): Object

Define a model through the specification in spec. Each key is the name of a model element and
the value has to be an Object with the following possible fields: value (Object) for the default
value, valid (String/RegExp) for validating the values (based on the underlying validation
language of the validate() method), autoreset (Boolean) for indicating that on each value
write, the value should be automatically reset to the initial value, and store (Boolean) for
indicating that the value should be persistently stored in the browser's localStorage. Multiple
calls to the model() method on the same component incrementally add model elements.

cs(this).model({
"param:realms": { value: [], valid: "[string*]" },
"data:realm": { value: "", valid: "string", store: true },
"data:username": { value: "", valid: "string", store: true },
"data:password": { value: "", valid: "string" },
"state:username": { value: "empty", valid: "string" },
"state:username-hint": { value: "", valid: "string" },
"state:password": { value: "empty", valid: "string" },
"state:password-hint": { value: "", valid: "string" },
"state:hashcode-col": { value: 0, valid: "number" },
"state:hashcode-txt": { value: "", valid: "string" },
"state:button-enabled": { value: false, valid: "boolean" },
"event:button-clicked": { value: false, valid: "boolean", autoreset: true }

})

component.value({ name: String, [op: String,] [value: Object,] [force: Boolean,]
[injected: Boolean] })

component.value(name: String, [value: Object,] [force: Boolean])

Get the value of component's model element named name or set the value of component's model
element named name to value. As each value change causes observers to be triggered, by
default changing a value to the same value does not trigger anything. But if force is true even
setting a model element to its current value triggers observers. Setting the option injected to

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 14 / 22

true should be done by plugins only and prevents model value observers from rejecting the
(already injected) value.

var val = cs(this).value("foo")
cs(this).value("foo", "bar")

If you store arbitrary sub-structured values, you can make name a path full specification based on
the language supported by the select() method:

var val = cs(this).value("foo.bar[1].baz['the-quux'])
cs(this).value("foo.bar[1].baz['the-quux']", "bar")

In addition to the basic get/set operations on scalar values, you can also use array and hash
operations on collections by using the op option. Supported op values are "get", "set",
["splice",offset,remove], "delete", "push", "pop", "unshift" and "shift". The last four
array operations are internally translated to the corresponding splice operation. The arguments
to the splice operation are the same as for JavaScript's Array.prototype.splice: "offset" is
the 0-based offset into the array to operate at and "remove" is the number of elements to
remove at "offset" (before the value is added). The operations get/set/delete operate on
collection elements while the operations splice/push/pop/unshift/shift operate on collections,
hence you have to provide a path in name which is suitable for them. The operations
get/set/delete can operate on both array and hash elements while
splice/push/pop/unshift/shift can operate on array objects only.

To illustrate the functionality see the following comparisons between the standard JavaScript
variable access code and the ComponentJS model value access code.

First, working with scalars:

// val = foo.bar
val = cs(this).value("foo.bar")
val = cs(this).value({ name: "foo.bar", op: "get" })

// foo.bar = "quux"
cs(this).value("foo.bar", "quux")
cs(this).value({ name: "foo.bar", op: "set", value: "quux" })

Second, working with Arrays:

// foo.bar = []
cs(this).value("foo.bar", [])
cs(this).value({ name: "foo.bar", value: [] })

// len = foo.bar.length
len = cs(this).value("foo.bar").length

// val = foo.bar[42]
val = cs(this).value("foo.bar[42]")
val = cs(this).value({ name: "foo.bar[42]", op: "get" })

// foo.bar[42] = "quux"
cs(this).value("foo.bar[42]", "quux")
cs(this).value({ name: "foo.bar[42]", op: "set", value: "quux" })

// foo.bar.splice(1, 0, "quux")
cs(this).value({ name: "foo.bar", op: ["splice", 1, 0], value: "quux" })

// foo.bar.push("foo")
cs(this).value({ name: "foo.bar", op: "push", value: "foo" })

// val = foo.bar.pop()
val = cs(this).value({ name: "foo.bar", op: "pop" })

// foo.bar.unshift("bar")
cs(this).value({ name: "foo.bar", op: "unshift", value: "bar" })

// val = foo.bar.shift()
val = cs(this).value({ name: "foo.bar", op: "shift" })

Third, working with hashes:

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 15 / 22

// foo.bar = {}
cs(this).value("foo.bar", {})
cs(this).value({ name: "foo.bar", value: {} })

// keys = Object.keys(foo.bar)
keys = Object.keys(cs(this).value("foo.bar"))

// val = foo.bar.baz
// val = foo.bar["baz"]
val = cs(this).value("foo.bar.baz")
val = cs(this).value("foo.bar['baz']")
val = cs(this).value({ name: "foo.bar.baz", op: "get" })
val = cs(this).value({ name: "foo.bar['baz']", op: "get" })

// foo.bar.baz = "quux"
// foo.bar["baz"] = "quux"
cs(this).value("foo.bar.baz", "quux")
cs(this).value("foo.bar['baz']", "quux")
cs(this).value({ name: "foo.bar.baz", op: "set", value: "quux" })
cs(this).value({ name: "foo.bar['baz']", op: "set", value: "quux" })

// delete foo.bar.baz
// delete foo.bar["baz"]
cs(this).value({ name: "foo.bar.baz", op: "delete" })
cs(this).value({ name: "foo.bar['baz']", op: "delete" })

component.touch({ name: String, })

component.touch(name: String)

Touches the value of component's model element named name, without changing the value but
with triggering all its "set" observers (its "changed" observers are not triggered). This can be
useful for firing "set" observers manually.

cs(this).touch("foo")

component.observe({ name: String, func: Function, [touch: Boolean = false,] [boot:
Boolean = false,] [op: String = "set",] [spool: String = null,] [noevent: Boolean =
false] }): Number

component.observe(name: String, func: Function): Number

Observe the value of component's model element named name for op operations (by default "set"
operations). For "get" operations, the callback function func has to be of signature func(ev:
Event, value: Object): Void. For "set" (and "splice", "delete", "push", "pop", "unshift", "shift") and
"changed" operations, the callback function func has to be of signature func(ev: Event, value-
new: Object, value-old: Object, op: Object, path: String): Void. Both types of callbacks can
override the value by using ev.result(value). The observe() method returns an id which
uniquely identifies the observation. Instead of having to manually release the observation later
via unobserve() you can use the spool mechanism and spool the corresponding unobserve()
operation via spool. Option noevent (similar to the same option for subscribe()) prevents the
passing of the event parameter ev to the callback function func in case you don't need it. Option
touch causes observe() to execute touch() internally at the end of its observation registration
operation for bootstrapping purposes. This indirectly causes the callback function func (and also
all other observers) to execute. Option boot causes observe() to execute the callback function
func once at the end of its observation registration operation for bootstrapping purposes. This
explicitly causes the callback function func (and only func and no other observers) to excecute.

id = cs(this).observe("state:username", function (ev, username) {
...

})

component.unobserve({ id: Number }): Void

component.unobserve(id: Number): Void

Release the observation identified by id, previously acquired by a call to observe(). This is
usually done implicitly through the spooling mechanism.

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 16 / 22

cs(this).unobserve(id)

Events
The Event mechanism is a central one in ComponentJS. Both Models and Services are internally based on
the Events mechanism. An Event is an object published towards a target component. It is delivered in 4
phases:

• In phase 1 (the "capturing" phase) the Event is delivered to all components on the path from the
root component (inclusive) towards the target component (exclusive).

• In phase 2 (the "targeting" phase) the Event is delivered to the target component.
• In phase 3 (the "spreading" phase) the Event is delivered to all descendant components of the

target component in a depth-first traversal order.
• In phase 4 (the "bubbling" phase) the Event is delivered (again) to all components on the path

from the target component (exclusive) to the root component (inclusive).

Event objects are implicitly created by the publish() operation and they provide various getter/setter
methods:

• target() (Component): target component the event is send to
• propagation() (Boolean): whether event propagation should continue
• processing() (Boolean): whether final default event processing should be performed
• dispatched() (Boolean): whether event was dispatched at least once to a subscriber
• decline() (Boolean): whether event was declined by subscriber
• state() (Boolean): state of dispatching: capturing, targeting, spreading or bubbling
• result() (Object): optional result value event subscribers can provide
• async() (Boolean): whether event is dispatched asynchronously

component.subscribe({ name: String, [spec: Object = {}], [ctx: Object = component,]
func: Function, [args: Object[] = []], [capturing: Boolean = false], [spreading:
Boolean = false], [bubbling: Boolean = true], [noevent: Boolean = false],
[exclusive: Boolean = false], [spool: String = null] }): Number

component.subscribe(name: String, func: Function, [args: Object, ...]): Number

Subscribe to event name (optionally sub-specified via spec) on component component and
execute callback func as func(ev: Event , args: Object, ..., sargs: Object, ...) once the
event is dispatched to component after it was published. By default an event is dispatched in the
(mandatory) targeting and (optional) bubbling phases.

◦ Option ctx allows you to give "this" a particular value for the callback func. Option
args allows you to pass additional parameters to func (before those passed by
publish().

◦ Option noevent does not pass the ev: Event parameter to func.
◦ Setting option capturing to "true" indicates that the event should be also dispatched

in the capturing phase.
◦ Setting option spreading to "true" indicates that the event should be also dispatched

in the spreading phase.
◦ Setting option bubbling to "false" indicates that the event should not be dispatched in

the bubbling phase.
◦ Option exclusive can be set to "true" for an exclusive subscription, i.e., a subscription

which prevents any subsequent subscriptions.

The subscribe() method returns an id which uniquely identifies the subscription. Instead of
having to manually release the subscription later via unsubscribe() you can use the spool
mechanism and spool the corresponding unsubscribe() operation via option spool.

cs(self).subscribe({
name: "data-loaded",
spool: "prepared",
func: function (ev, data, info) {

...
}

})

component.unsubscribe({ id: Number }): Void

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 17 / 22

component.unsubscribe(id: Number): Void

Release the subscription identified by id, previously acquired by a call to subscribe(). This is
usually done implicitly through the spooling mechanism.

cs(this).unsubscribe(id)

component.publish({ name: String, [spec: Object = {},] [async: Boolean = false,]
[capturing: Boolean = true,] [spreading: Boolean = false,] [bubbling: Boolean =
true,] [completed: Function,] [resultinit: Object = undefined,] [resultstep:
Function,] [directresult: Boolean = false,] [noresult: Boolean = false,] [firstonly:
Boolean = false,] [silent: Boolean = false,] [args: Object[] = []] }): Object

component.publish(name: String, args...: Object): Object

Publishes an Event to component component named name and with optional arguments args. By
default the event is intended to be dispatched in the (mandatory) targeting and (optional)
capturing and bubbling phases. The following options allow you to further control the event
publishing process:

◦ Option spec allows you to sub-specify/parametrize the event with arbitrary key/value
pairs in case the name is too generic.

◦ Option async allows the event processing to occur asynchronously.
◦ Setting option capturing to "false" indicates that the event should not be intended to

be dispatched in the capturing phase.
◦ Setting option spreading to "true" indicates that the event should also be intended to

be dispatched in the spreading phase.
◦ Setting option bubbling to "false" indicates that the event should not be intended to

be dispatched in the bubbling phase.
◦ Option completed executes the specified callback function once the event was

dispatched to subscribers in all possible phases. This allows you to react at the end of
async=true events.

◦ Option resultinit and resultstep

cs(this).publish("data-loaded", data, info)

Services
Services are loosely coupled method calls across components. The functionality provider does register()
the service and the functionality consumer does call() the service.

component.register({ name: String, [ctx: Object = component,] func: Function, [args:
Object[] = [],] [spool: String,] [capturing: Boolean = false,] [spreading: Boolean =
false,] [bubbling: Boolean = true] }): Number

component.register(name: String, func: Function): Number

Register a service name on component with the implementing callback function func. The
function returns an identifier for unregister(). The following options can be used to control the
later service calls:

◦ Option ctx can be used to set the this pointer for func.
◦ Option args can be used to pass additional parameters to func (before the args of

call()!).
◦ Option spool can be used to spool the corresponding unregister() call.
◦ Option capturing can be set to true to provide the service also in the "capturing"

phase.
◦ Option spreading can be set to true to provide the service also in the "spreading"

phase.
◦ Option bubbling can be set to false to not provide the service in the "bubbling" phase.

var id = cs(this).register({
name: "load-entity",
args: [em],
func: function (em, clazz, id) {

return em.findById(clazz, id);

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 18 / 22

}
})

component.unregister({ id: Number }): Void

component.unregister(id: Number): Void

Release the registration identified by id, previously acquired by a call to register(). This is
usually done implicitly through the spooling mechanism.

cs(this).unregister(id)

component.callable({ name: String[, value: Boolean] }): Boolean

component.callable(name: String[, value: Boolean]): Boolean

Checks whether a registered service is callable/enabled or enable/disable a registered service.
On every change to the "callable" status of a service, an internal event named
"ComponentJS:service:name:callable" is published with two arguments: the new and old
boolean value.

cs(this).subscribe("ComponentJS:service:load-person:callable", function (old, new) {
if (new) {

/* react on now callable service */
}

})
cs(this).callable("load-person", false)
cs(this).callable("load-person", true)

component.call({ name: String, [args: Object[] = [],] capturing: Boolean = false,]
spreading: Boolean = false,] bubbling: Boolean = true] }): Object

component.call(name: String [, args...: Object]): Object

Call service named name on component component, optionally passing it the arguments args
(after the optional args of register()!). The following options can be used to control the service
call:

◦ Option capturing can be set to true to deliver the underlying service event also in the
"capturing" phase.

◦ Option spreading can be set to true to deliver the underlying service event also in the
"spreading" phase.

◦ Option bubbling can be set to false to not deliver the underlying service event in the
"bubbling" phase.

var person = cs("/sv").call("load-entity", "Person", 42)

Test-Driving
ComponentJS has optional support for test-driving an application, based on asynchronously executed use-
cases with the help of its testdrive plugin.

ComponentJS.suite(): Void

Notice: requires ComponentJS plugin testdrive to be loaded!

Notice: requires external library jQuery to be loaded!

Open the interactive dialog of use-cases which can be driven. Usually this is executed from within
the application itself (in case the test-drive functionality is used for something like UI macros) or
through an external bookmark.

/* open test-drive suite from within application */
if (cs.plugin("testdrive"))

cs.suite();

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 19 / 22

[new] ComponentJS.promise(): Promise

[new] ComponentJS.promise(executor: Function): Void

Notice: requires ComponentJS plugin testdrive to be loaded!

Return a Promise/A+ based promise, internally backed by an embedded "Thenable"
implementation. The alternative usage with an executor (of type "(fulfill: (value?: any) =>
Promise, reject: (value?: any) => Promise) => void" in TypeScript definition syntax)
avoids a temporary variable.

/* standard usage */
var promise = new $cs.promise();
doSomethingAsync(

function onSuccess (msg) { promise.fulfill(msg); },
function onError (err) { promise.reject(err); }

);
return promise.proxy;

/* alternative usage (regular) */
return new $cs.promise(function (fulfill, reject) {

doSomethingAsync(
function onSuccess (msg) { fulfill(msg); },
function onError (err) { reject(err); }

);
}).proxy;

/* alternative usage (compact) */
return $cs.promise(function (fulfill, reject) {

doSomethingAsync(fulfill, reject);
}).proxy;

ComponentJS.usecase({ name: String, desc: String, [conf: Object,] func: Function }):
Void

ComponentJS.usecase(name: String, desc: String, func: Function): Void

Notice: requires ComponentJS plugin testdrive to be loaded!

Define a single use-case of unique name name, with description desc, default configuration conf
and the use-case executing function func (of type "() => void" in TypeScript definition syntax).
The name is used for driving the use-case with drive() and conf can be overwritten with
drive(). The function func can either execute synchronously or asynchronously. In case of a
synchronous execution, the return value of func does not matter. In case of an asynchronous
execution, the return value of func has to be a Promise/A+ based promise (usually created with
ensure(), await(), drive or poll implicitly, or with promise() explicitly). The callback function
receives the actual configuration as the first parameter.

if (cs.plugin("testdrive")) {
cs.usecase("reset", "reset all login dialogs", function () {

return cs.ensure("/ui/panel/model", "prepared").then(function (comp) {
comp.value("event:reset", true);

});
});
cs.usecase({

name: "login",
desc: "fill out a login dialog",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

return cs.ensure("//login" + conf.num + "/model", "prepared")
.then(function (comp) {
comp.value("data:realm", conf.realm);
comp.value("data:username", conf.username);
comp.value("data:password", conf.password);
comp.value("event:login-requested", true);

});
}

});
cs.usecase({

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 20 / 22

name: "awaitStatus",
desc: "await the status to show a particular text",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

var re = new RegExp("login from \".*login" + conf.num +
"\" with realm \"" + conf.realm + "\", username \"" +
conf.username + "\" and password \"" + conf.password + "\"");

return cs.poll(function (fulfill, reject) {
return $("div.status").text().match(re);

}, function () {
return cs.once($("div.status"), "mutation");

});
}

});
cs.usecase("all", "fill out all login dialogs", function () {

return cs.drive("reset")
.then(function () { return cs.drive("login", { num: 2 }); })
.then(function () { return cs.drive("awaitStatus", { num: 2 }); })

});
}

ComponentJS.drive({ name: String, [conf: Object,] [timeout: Number] }): Promise

ComponentJS.drive(name: String, [conf: Object,] [timeout: Number]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Drive a single use-case name, with optional configuration conf and a run-time timeout of timeout
(by default 10*1000) milliseconds. The function returns a Promise/A+ promise which is either
fulfilled (with dummy value true) or rejected with an error message.

cs.drive("login", { num: 3 }, 2*1000).then(null, function (e) {
alert("failed to login");

});

ComponentJS.ensure({ path: String, state: String, [min: Boolean = true,] [max:
Boolean = false,] [sync: Boolean = false] }): Promise

ComponentJS.ensure(path: String, state: String): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Ensure that a component under path reaches a particular state which is at least (in case of min
= true), and/or at most (in case of max = true) a particular state, by synchronously (in case of
sync = true) or asynchronously (by default), triggering a state change on the component under
path. The state change is explicitly trigger by ensure() itself. The function returns a Promise/A+
promise which is either fulfilled with the component object corresponding to path or rejected
with an error message.

cs.ensure({ path: "//login1/model", state: "prepared", min: true })
.then(function (comp) {

comp.value("data:username", "foo");
});

ComponentJS.await({ path: String, state: String, [direction: String = "enter"] }):
Promise

ComponentJS.await(path: String, state: String, [direction: String = "enter"]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Awaits that a component under path reaches a particular state, either on enter (in case of
direction = "enter") or leave (in case of direction = "enter"). The enter/leave methods of
the component will be already called in both cases. The component under path is NOT required
to already exist. It is allowed that it springs into existence later. There is NO state change trigger
by await() itself. The function returns a Promise/A+ promise which is either fulfilled with the
component object corresponding to path or rejected with an error message.

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 21 / 22

cs.await({ path: "//login1/model", state: "prepared" }).then(function (comp) {
comp.value("data:username", "foo");

});

ComponentJS.poll({ check: Function, [wait: Function,] [max: Number = 600] }):
Promise

ComponentJS.poll(check: Function, [wait: Function,] [max: Number = 600]): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Polls for a situation to occur by checking its occurance condition with check (of type () =
Boolean> in TypeScript definition syntax) and in case of a still false return waits through wait
and repeat from the beginning with a new round with check. The wait function has to be of type
"() => Promise" and usually delays processing (usually with setTimeout()) and then resolves. If
you pass a Number instead of a Function to wait, a default implementation is used which waits
the number of milliseconds. The default for wait is 100, i.e., it internally maps onto "function
() { return cs.sleep(100); }".

cs.usecase({
name: "awaitStatus",
desc: "await the status to show a particular text",
conf: { num: 1, realm: "foo", username: "bar", password: "baz!quux" },
func: function (conf) {

var re = new RegExp("login from \".*login" + conf.num +
"\" with realm \"" + conf.realm + "\", username \"" +
conf.username + "\" and password \"" + conf.password + "\"");

return cs.poll(function (fulfill, reject) {
return $("div.status").text().match(re);

}, function () {
return cs.once($("div.status"), "mutation");

});
}

});

ComponentJS.sleep({ ms: Number, }): Promise

ComponentJS.sleep(ms: Number): Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Sleeps a certain amount of milliseconds (with setTimeout()) and then resolves the promise
which is returned by this function.

cs.sleep(100).then(function () { ... })

ComponentJS.once({ selector: String/Object, events: String, [subselector: String =
null] }): Promise

ComponentJS.once(selector: String/Object, events: String, [subselector: String = null]):
Promise

Notice: requires ComponentJS plugin testdrive to be loaded!

Notice: requires external library jQuery to be loaded!

Awaits once(!) with jQuery's one() method for a DOM event to occur and then resolves the
promise (with the jQuery event object as the value) this function returns. The three parameters
selector, events and subselector are directly passed through to jQuery by mapping onto the
internal call "jQuery(selector).one(events, subselector, ...)". Additionally, in case
events = "mutation" the function internally uses the HTML5 MutationObserver functionality to
await a DOM mutation (in this case subselector is ignored).

cs.once("ul.list", "click", "li").then(function (ev) { ... })

ComponentJS Application Programming Interface (API) 1.2.3

ComponentJS Application Programming Interface (API) 22 / 22

	API Management
	symbol
	version

	Library Management
	bootstrap
	shutdown
	plugin

	Debugging
	debug
	debug_instrumented
	debug_window

	Code Structuring
	ns
	select
	validate
	params
	attribute
	clazz
	trait

	Component Creation
	create
	destroy

	Component Information
	id
	name
	obj
	cfg

	Component Lookup
	ComponentJS
	exists

	Component Tree
	path
	parent
	children
	attach
	detach
	walk_up
	walk_down

	States
	transition
	state
	state_compare
	state_auto_increase
	state_auto_decrease
	guard

	Spools
	spool
	spooled
	unspool

	Markers
	mark
	marked

	Properties
	property

	Sockets
	socket
	unsocket
	link
	unlink
	plug
	unplug

	Models
	model
	value
	touch
	observe
	unobserve

	Events
	subscribe
	unsubscribe
	publish

	Services
	register
	unregister
	callable
	call

	Test-Driving
	suite
	promise
	usecase
	drive
	ensure
	await
	poll
	sleep
	once

